
TAIDL: Tensor Accelerator ISA Definition Language with
Auto-generation of Scalable Test Oracles

Devansh Jain
University of Illinois

Urbana-Champaign, USA
devansh9@illinois.edu

Marco Frigo
University of Illinois

Urbana-Champaign, USA
mfrigo3@illinois.edu

Jai Arora
University of Illinois

Urbana-Champaign, USA
jaia3@illinois.edu

Akash Pardeshi
University of Illinois

Urbana-Champaign, USA
pardesh2@illinois.edu

Zhihao Wang
University of Illinois

Urbana-Champaign, USA
zhihaow6@illinois.edu

Krut Patel
University of Illinois

Urbana-Champaign, USA
ksp8@illinois.edu

Charith Mendis
University of Illinois

Urbana-Champaign, USA
charithm@illinois.edu

Abstract

With the increasing importance of deep learning workloads, many
hardware accelerators have been proposed in both academia and
industry. However, software tooling for the vast majority of them
does not exist compared to the software ecosystem and innovations
proposed for established platforms such as CPUs and GPUs. We
observed that the lack of well-defined hardware-software inter-
faces and correctness testing tools like fast and scalable test oracles
(also known as functional simulators) act as significant barriers to
adopting these emerging accelerators in the software community.
These interfaces and tools are essential in building software such
as retargetable compilers and optimized kernels.

To bridge these gaps, we first present TAIDL, an instruction
specification language that provides novel constructs to describe
the instruction set architectures (ISAs) of tensor accelerators. Next,
given ISA definitions in TAIDL, we introduce techniques to auto-
matically generate fast and scalable test oracles for diverse sets
of accelerators, which are needed for testing software correctness
of code that targets pre-silicon hardware designs. Automated gen-
eration of such tools reduces the burden on hardware architects
and the repeated development efforts required across different ac-
celerator platforms. Further, our techniques allow us to execute
these simulators on GPUs, leading to highly scalable simulations.
To demonstrate the expressivity of TAIDL, we instantiated several
tensor accelerator ISAs with different compute capabilities and
memory hierarchies. Further, we show that test oracles generated
using TAIDL definitions are orders of magnitude faster and more
scalable than existing instruction-level functional simulators, mak-
ing them suitable for integration into software development cycles.
TAIDL is available at https://github.com/act-compiler/taidl.

This work is licensed under a Creative Commons Attribution 4.0 International License.
MICRO ’25, Seoul, Republic of Korea

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1573-0/25/10
https://doi.org/10.1145/3725843.3756075

CCS Concepts

• Hardware→ Emerging architectures; • Software and its en-

gineering→ Architecture description languages; Semantics;
Simulator / interpreter; Correctness; Software reliability.

ACM Reference Format:

Devansh Jain, Marco Frigo, Jai Arora, Akash Pardeshi, Zhihao Wang, Krut
Patel, and Charith Mendis. 2025. TAIDL: Tensor Accelerator ISA Definition
Language with Auto-generation of Scalable Test Oracles. In 58th IEEE/ACM

International Symposium on Microarchitecture (MICRO ’25), October 18–22,

2025, Seoul, Republic of Korea. ACM, New York, NY, USA, 18 pages. https:
//doi.org/10.1145/3725843.3756075

1 Introduction

The increasing demand for machine learning (ML) workloads has
brought innovations across the system stack, from applications to
hardware designs. On one front, there have been multiple tensor
accelerator designs (NPUs) proposed at top-tier computer architec-
ture venues [20, 47, 51, 80, 101, 114]. On another front, there have
been multiple systems and compiler optimization work proposed
at top-tier systems and compiler venues [21, 31, 42, 44, 106, 116].

1.1 Problem

Although plenty of work has been done on both fronts, we note
a subtle disconnect between the software and hardware research.
Systems and compiler optimizations are mainly targeted and tested
on existing CPU and GPU designs. Software works that evaluate on
tensor accelerators [72, 84, 119] have been mainly limited to a hand-
ful of proprietary andmature designs, such as Google TPU [69] with
proprietary mature compiler support. A vast majority of accelerator
designs have not been used for software evaluations.

To understand this disconnect, we analyze the tooling available
for popular accelerator platforms (summarized in Table 1). These
tools allow developers to build (Programmability), validate (Correct-
ness Testing), and optimize (Performance Testing) software support
for hardware. We observe two major disparities between hardware
with mature software support (CPUs, GPUs, and commercial accel-
erators) and those without (academic accelerators).

1316

https://orcid.org/0009-0006-1442-1502
https://orcid.org/0009-0008-2320-9989
https://orcid.org/0009-0004-7759-481X
https://orcid.org/0009-0006-2792-589X
https://orcid.org/0009-0008-9527-0308
https://orcid.org/0009-0001-2802-2354
https://orcid.org/0000-0002-8140-2321
https://github.com/act-compiler/taidl
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3725843.3756075
https://doi.org/10.1145/3725843.3756075
https://doi.org/10.1145/3725843.3756075
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3725843.3756075&domain=pdf&date_stamp=2025-10-18

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Jain et al.

Programmability

←−−−−−−−−−−−−→
Correctness Testing

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Performance Testing

←−−−−−−−−−−−−−−−−−−−−−−−−−−→

Hardware Category Target Well-Documented Test Oracle Publicly-Accessible Performance Model
ISA Specification (Functional Simulator) Hardware (Timing Simulator)

CPUs Intel Xeon Gold ✓ ✓
✓

✓

[37] [39] [4]

GPUs NVIDIA A100 ✓ ✓
✓

✓

[41] [48] [11, 73]

AMD AI Engine [36] ✓ ✓
✓

✓

[59] [61] [60]
Commercial Google TPU [69–71] ✓ ✓

✓
✓

Accelerators [27] [26] [100]

AWS Trainium [64] ✓ ✓
✓ ✗[65] [66]

Eyeriss [23] ✗ ✗ ✗ ✗

Academic MAERI [80] ✗ ✗ ✗ ✓

Accelerators FEATHER [114] ✗ ✗ ✗ ✓

Gemmini [51] ✓ ✓
✗

✓

[102] [103] [5, 99]

Table 1: Summarizing the status of ISA semantics and simulation tools relevant for software development. We observe that

CPUs, GPUs, and commercial accelerators have well-defined ISA semantics and simulation tools. Most academic accelerators

have neither a well-documented ISA nor a complete set of simulation tools (lack correctness testing tools).

Observation 1: Limited programmability due to lack of

well-defined software-hardware interfaces. The first difference
we observe for many accelerator designs is the lack of instruction
set architectures (ISAs) or assembly-like kernel programming lan-
guages, commonly called virtual ISAs, which serve as well-defined
hardware-software interfaces. CPUs and GPUs have mature ISAs
(like x86 [37]) or virtual ISAs (like NVPTX [41]) that have played a
pivotal role in enabling software tools such as compilers [42, 83] and
high-performance libraries [40, 50]. Commercial tensor accelerators
like Google TPU [69–71], AWS Inferentia [62] & Trainium [64] have
proprietary ISAs with open-source kernel programming languages
(like Pallas TPU [27] and AWS NKI [65]) that have enabled success-
ful software tools such as Google XLA-TPU compiler [31] and AWS
Neuron SDK [63]. A vast majority of tensor accelerators proposed
in academia [20, 23, 47, 74, 80, 114] remain under-explored by the
software community due to the lack of well-documented ISAs and,
as a result, limited programmability.

ISA semantics provide a clear and precise specification of how
hardware instructions behave. These semantics lead to multiple
downstream use cases in software development and research. For
CPU architectures, they have been used in traditional compiler
passes [16, 82], automated compiler construction techniques [12,
18, 22, 87, 95], emulation [52], finding miscompilation bugs [88, 89],
software verification [107], ISA-level security analysis [14], and to
discover inconsistencies between vendor manuals and actual hard-
ware behavior [46, 54]. These applications show that ISA semantics

aid programmability of hardware, making it easier for developers
and researchers to build mature software support and, thus, are
critical for the wider adoption of new accelerator designs.

Observation 2: Lack of fast tooling to test software cor-
rectness. The second difference we observe for many accelerator
designs is the lack of fast correctness testing infrastructures that
are fundamental to maintaining correct functionality of the soft-
ware stack, especially for compilers and hand-optimized assembly

kernels. To ensure correctness, hardware platforms provide either
physical chip implementations or software test oracles that can val-
idate the behavior of programs against expected results. The term
“test oracle”, used in Sail [52] and software testing literature [6, 13],
also appears as “functional simulator” in some prior works. Intel
provides a test oracle, Intel SDE [39], which has enabled developers
to test x86 ISA extensions like AMX [38] before the chips were
available. Test oracles [26, 61, 66] provided by commercial accelera-
tors [36, 62, 64, 69–71] have enabled rapid iteration and debugging
workflows [25]. Such workflows are not feasible for pre-silicon
designs proposed in academia due to the lack of fast test oracles.

Triggers
Correct Output

Triggers

Debug Incorrect
Output

Compare
Outputs

Correctness
Testsmain

PR

Performance
Tests

Collect
Metrics

Profile Perf.
Degradation

Test Passed

opt

Figure 1: Summarized view of a typical testing infrastructure

used in compiler development to merge a new change (opt)
into the production branch (main). Performance tests 2○ are

triggered only if opt passes correctness tests 1○.

Typical testing infrastructures (as shown in Figure 1) of compil-
ers [7, 21, 31, 63] often rely on both correctness and performance
tests, where performance tests 2○ are only triggered if all correct-
ness tests pass 1○. Compiler fuzzing techniques based on output
comparison using physical chips and test oracles have uncovered
several bugs in mainstream compilers [91, 118, 122] and ML com-
pilers [43, 68, 85, 86, 110] for CPUs and GPUs. Test oracles [26]
have also been used to discover bugs in accelerator compilers like

1317

TAIDL: Tensor Accelerator ISA Definition Language with Auto-generation of Scalable Test Oracles MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

(b) Corresponding TAIDL definition

64

16

u8 ...

i8

...
16

64

AMX tile registers

i8

64

16

...

④
matrix-matrix

multiply

⑥
add

tmm0 ... tmm7

8

(a) Visualization of Intel AMX instruction tdpbusd on 1KB tile registers

①
load src0

⑤
load dst

⑦
store dst

16

64

4

②
load src1

③
transform

layout

16

16

i32 ...

 [tdpbusd] (dst, src0, src1)

 %T2.2:16x16x4xi8 = reshape(%T2.1);
 %T2.3:16x4x16xi8 = transpose(%T2.2, dim={0,2,1});
 %T2.4:64x16xi8 = reshape(%T2.3);

 %A.32:16x64xi32 = convert(%T1.3);
 %B.32:64x16xi32 = convert(%T2.4);
 %C.32:16x16xi32 = dot_general(%A.32, %B.32);
④

 %T2.1:1x16x64xi8 <- $tiles[src1];

 %T1.1:1x16x64xi8 <- $tiles[src0];
 %T1.2:1x16x64xu8 = bitcast_convert(%T1.1);
 %T1.3:16x64xu8 = reshape(%T1.2);
①

 %T3.1:1x16x64xi8 <- $tiles[dst];
 %T3.2:1x16x16xi32 = bitcast_convert(%T3.1);
 %T3.3:16x16xi32 = reshape(%T3.2);

 %Out.1:16x16xi32 = add(%T3.3, %C.32);

 %Out.2:16x16x4xi8 = bitcast_convert(%Out.1);
 %Out.3:1x16x64xi8 = reshape(%Out.2);
 %Out.3:1x16x64xi8 -> $tiles[dst];

⑤

⑥

⑦

②

③

signed
32-bit

unsigned
8-bit

signed
8-bit

Figure 2: Visualization of Intel AMX instruction tdpbusd where only steps 4○ and 6○ perform the actual computation. Step 3○
shows the data layout transformation applied to tile register src1, where groups of 4 columns are flattened in a "zig-zag" pattern,

resulting in a 64x16xi8matrix. Note that the implementation of the instruction does not generate this intermediate matrix;

rather, it relies on the data paths within the systolic-array-based architecture of the Intel AMX TMUL compute unit to manage

the data layout. The input matrices to step 4○ are of two different types, with the accumulation type as signed 32-bit integer.

JAX Pallas TPU [28]. This shows that fast and accurate test oracles
ensure software correctness and, thus, are critical for building robust
software stacks for pre-silicon designs of tensor accelerators.

Tensor accelerator platforms provide various performance mod-
els ranging from cycle-accurate timing simulators [5, 60] to fast ap-
proximate analytical [99, 114] and learned [100] cost models. Such
tools are extensively studied and established within the architecture
community. Therefore, our focus is on improving programmability
and correctness testing tools, not on performance modeling.

In summary, we observe that limited programmability and cor-
rectness testing infrastructure for a majority of tensor accelerators
has resulted in a gap between software and hardware research.
Hardware architects need to provide well-defined ISA semantics
and fast test oracles for wider adoption of their accelerator designs.

1.2 Challenges

Designingwell-defined ISA semantics and fast test oracles for tensor
accelerators poses two key challenges - expressivity and scalability.

Challenge 1: Precisely expressing complex tensor opera-

tions. While tensor accelerator designs are often designed to opti-
mize matrix multiplication and convolution operations, these are
often accompanied by complex data layout transformations such as
reshaping, padding, transposing, and tiling. Additionally, tensor ac-
celerators often support multiple data types with varying precision,
like mixed precision training [93] in FP32/FP16 and INT32/INT8.
The semantics of such operations are often complex and are not
easily expressible in existing scalar ISA description languages such
as Sail [52]. For example, consider the Intel AMX instruction tdp-
busd visualized in Figure 2 (a) – only steps 4○ and 6○ perform the
actual computation of matrix multiplication and addition. Step 3○
performs data layout transformation on the second tile register
(src1) by collapsing four contiguous columns into a single column.
Step 4○ computes over inputs of unsigned (red) and signed (blue)
8-bit integers and accumulates over signed 32-bit integer (purple).

Challenge 2: Developing fast and scalable test oracles.

Building test oracles for tensor accelerator ISAs that scale well with
the size of the input tensors is challenging. Simulating the execution
of instructions on these large tensors can be computationally ex-
pensive. Many existing test oracles are designed with hand-crafted
data structures written in programming languages like C++ and
compiled using general-purpose compilers like GCC. Often, these
test oracles, like Gemmini Spike [103], are single-threaded and thus
do not scale as input tensors become large (more details in §7). This
makes them unsuitable for simulating large tensor operations that
are common in ML workloads. Additionally, these test oracles are
designed for a specific accelerator, and transferring such tooling to
a new accelerator design requires considerable engineering effort.

1.3 Our Solution

In this paper, we introduce the first instruction specification lan-
guage targeting tensor accelerators, TAIDL (Tensor Accelerator

ISA Definition Language), that standardizes the way ISAs and
their semantics are developed for tensor accelerators. We leverage
this standardization to introduce techniques that automatically gen-
erate fast and scalable test oracles for any given accelerator ISA
specified in TAIDL. Since these techniques are parameterized based
on TAIDL, they significantly reduce the engineering effort needed
to build such tools targeting multiple accelerator platforms.

TAIDL is designed to express the intent of the instructions – i.e.,
their semantics – without delving into hardware implementation
details. This follows from the fact that an ISA acts as a contract
between the hardware and software, abstracting away low-level
microarchitectural details from the exposed programming model.

Addressing Challenge 1. TAIDL allows us to express complex
tensor operations like data layout transformations using a rich set
of tensor operators. In this paper, we use the XLA-HLO operators
defined in the tensor compiler XLA [31]. Figure 2 (b) shows the
TAIDL definition of AMX instruction tdpbusd. The complex data

1318

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Jain et al.

layout transformation in step 3○ is compactly represented by a se-
ries of reshape and transpose operators (orange box). The compute
in step 4○ is precisely represented with convert operators (green
box). This allows us to precisely express complex tensor operations
in a high-level language that is easy to understand and expressive
enough to capture the complexities of tensor accelerators.

Addressing Challenge 2. Since TAIDL models ISA semantics
using high-level tensor operators like XLA-HLO, it allows us to
develop novel techniques to automatically generate test oracles that
can be compiled using production-grade tensor compilers such as
XLA. Unlike existing test oracles, these auto-generated test oracles
are multi-threaded and deployable on GPUs. As a result, they are
orders of magnitude faster and also scalable to large tensors. Since
the auto-generation is parameterized by TAIDL constructs, we can
generate fast and scalable test oracles for any ISA defined in TAIDL.

In summary, this paper makes the following contributions.
• We propose the first instruction specification language for
tensor accelerators, TAIDL, that can be used to develop ISAs
and their semantics. (§3)
• We demonstrate the expressivity of TAIDL by instantiating
existing ISAs of both academic and industrial accelerators
with diverse memory and compute capabilities. (§4)
• We discuss key language properties that enable architects to
define new tensor accelerator ISAs in TAIDL. (§5)
• We present techniques to automatically generate fast and
scalable test oracles from TAIDL definitions. (§6)
• We evaluate the scalability of the auto-generated test ora-
cles against existing instruction-level test oracles – Gem-
mini Spike and Intel SDE. Our results show that the auto-
generated test oracles are significantly faster. (§7)
• We present case studies on practical usage of the generated
test oracles by simulating an end-to-end I-BERT model [75]
and integrating it with Exo’s testing infrastructure [57]. (§8)

TAIDL has been released at https://github.com/act-compiler/taidl.

2 Background

We first provide the necessary background on ISA & its semantics,
tensor accelerators, simulation tools, and the XLA compiler.

2.1 ISA and ISA Semantics

An Instruction Set Architecture (ISA) is a specification that defines
the interface between the hardware and software. It defines the set
of instructions that a processor can execute and the format of these
instructions. The ISA acts as a contract between the hardware and
software. ISA semantics describe the intent or behavior of these
instructions. The software stack, especially compilers, is designed
to target a specific ISA. The semantics are defined in terms of the
state of the processor, the inputs, and the outputs of the instructions.
Semantics for CPU ISAs like x86 [37] andGPU ISAs like NVPTX [41]
are documented using C-style pseudocode formats.

The ISA is a key abstraction that enables software portability
across different hardware implementations. The microarchitecture
can vary across different implementations of the same ISA. For
example, the x86 ISA is implemented by various generations of
modern Intel and AMD processors, but the microarchitectures of
these processors are different (like pipeline depth, cache hierarchy).

These processors have different performance characteristics, power
consumption, and area, but the result of executing the same program
should be the same across all implementations. In other words, an
ISA defines the computational capabilities of a hardware, while the
microarchitecture defines how these capabilities are realized.

2.2 Tensor Accelerators and ISAs

Tensor accelerators (a.k.a. NPUs, Neural Processing Units) are a
class of hardware accelerators optimized for tensor computations,
leveraging various microarchitectural innovations such as systolic-
array-based executions. Several tensor accelerators (e.g., TPUs [69–
71], Eyeriss [23], Gemmini [51], MAERI [80], FEATHER [114]) have
been proposed, with varying instruction granularities, memory hi-
erarchies, dataflow configurations, and computational capabilities.

A typical tensor accelerator ISA would need to support a wide
range of tensor operations, data layout transformations, and mem-
ory access patterns. Figure 2 (a) visualizes the ISA semantics of Intel
AMX instruction tdpbusd, showing the complex steps around a
simple matrix multiplication (step 4○) of 16×64 and 64×16 matrices.
To illustrate the expressivity and evaluate TAIDL, we select three
accelerators with already existing ISAs that have diverse memory
hierarchies and compute capabilities: Google TPUv1 [71], Intel
AMX [38], and Gemmini [51] to instantiate their ISA semantics.

Tensor Processing Unit (TPU) is an accelerator designed by Google
for ML workloads. TPUv1 is designed for inference workloads, and
its design consists of a 256×256 systolic array to perform weight-
stationary matrix multiplication, as well as dedicated hardware to
perform non-linear activations and pooling operations. We model
TPUv1 ISA as per the details presented in [71].

Intel Advanced Matrix Extensions (Intel AMX) [38] is a new built-
in accelerator that improves the performance of deep-learning train-
ing and inference on the latest Intel cores. Its architecture consists
of two main components - two-dimensional registers (tiles) and an
accelerator engine (TMUL) that operates on the tiles. The Intel AMX
ISA extension provides instructions, with semantic definition [37],
to interact with the accelerator.

Gemmini [51] is an open-source full-stack generator of reconfig-
urable dataflow systolic-array-based accelerators. The accelerator
primarily consists of a systolic array that performs matrix mul-
tiplications, which supports both output-stationary and weight-
stationary dataflows. It is one of the few open-source accelerators
with a well-documented ISA [102] and a test oracle [103].

2.3 Simulation Tools

In the absence of physical chips, simulators play a key role in
evaluating an accelerator. These simulators are broadly used for
two tasks – measuring performance and testing correctness.

(1) Measuring Performance. The simulation methodology closest
to hardware execution is simulating the RTL design using tools
like Synopsys VCS [67] and Verilator [111]. These RTL simulators
are cycle-accurate but are very slow. Event-driven simulators, like
gem5 [15], model hardware microarchitecture at a higher level
of abstraction, enabling faster simulations by sacrificing a bit of
accuracy. Alternatively, software tools like compilers [7, 31] use
significantly faster approximate performance cost models [3, 72, 92,
123] in lieu of these simulators to decide on optimizations.

1319

https://github.com/act-compiler/taidl

TAIDL: Tensor Accelerator ISA Definition Language with Auto-generation of Scalable Test Oracles MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

(2) Testing Correctness. Software test oracles are used to test the cor-
rectness of the generated machine code and to debug the software
stack. They perform instruction-level simulations and are signifi-
cantly faster than cycle-level simulators. These simulations mask
the microarchitectural details and focus on the correctness of the
results rather than performance modeling. For example, Gemmini
has a hand-designed test oracle Spike [103], and Intel provides the
Intel Software Development Emulator (Intel SDE) [39] as a tool for
emulating ISA extensions such as Intel AMX [38].

Importance of correctness testing in software development pipelines.

Developers writing optimized kernels and software, such as com-
pilers, have two main objectives – correctness and performance.
Most software that runs on any hardware undergoes processing
by compilers, and thus, its correctness is paramount. Without the
correctness constraint, an optimization pass can simply replace
the code with no-ops (“Engineering a Compiler” [115], Page 5).
Therefore, it is important to test for both the correctness and the
performance of software, including those that target hardware ac-
celerators such as accelerator compilers and optimized kernels.

Fast and scalable Test Oracles. For pre-silicon hardware, like in-
design accelerators and accelerators proposed in academia, software
development pipelines entirely rely on available test oracles (if any)
for correctness testing. Therefore, these test oracles are expected
to be fast (produce results within a few milliseconds) and scalable.
However, existing test oracles, like Gemmini Spike [103], are often
single-threaded and not easily scalable to large workloads.

Building test oracles that are fast and scale for large workloads
requires considerable engineering effort and needs to be repeated
for every accelerator. In §6, we automatically generate fast and
scalable test oracles directly from TAIDL definitions.

2.4 XLA compiler and XLA-HLO IR

The XLA (Accelerated Linear Algebra) compiler [31] is an open-
source optimizing tensor compiler developed by Google for compil-
ing machine learning code to CPUs, GPUs, and TPUs. We use the
XLA’s tensor operators (XLA-HLO) as part of TAIDL definitions.

XLA-HLO supports 120+ operations with proper semantic de-
scription [9, 33, 34]. Following are some XLA-HLO operators used
in TAIDL definitions of different accelerator ISAs.

Generalized tensor computations. XLA-HLO contains several multi-
dimensional tensor operations such as dot_general (generalized
matrix multiplication), reduce, reshape, transpose, broadcast.

Element-wise scalar functions. XLA-HLO contains rank-agnostic
element-wise tensor operators1, which can be used to represent
scalar functions like scalar multiplication, ReLU activation function.

Branching. XLA-HLO has conditional and select operators, which
can be used to represent branching dependent on tensor data.

Bit-precise type conversion. XLA-HLO supports a variety of type
conversion operators, including bitcast, convert, bitcast-convert,
used for defining multi-byte memory accesses (such as f32, i32).
Proprietary floating point types can be precisely represented using
the XLA-HLO operator reduce-precision2 (discussed in §5.5).
1https://openxla.org/xla/operation_semantics#element-wise_unary_functions
2https://openxla.org/xla/operation_semantics#reduceprecision

3 Tensor Accelerator ISA Definition Language

Tensor Accelerator ISA Definition Language (TAIDL) is a domain-
specific language (DSL) designed to describe the Instruction Set
Architecture (ISA) of a tensor accelerator. An ISA provides infor-
mation about the user-programmable storage units (collectively
termed as data model) like scratchpads, and the instructions that
perform computations like data movement and compute on the
storage units. TAIDL provides a high-level understanding of the
computational capabilities of the accelerator without going into its
implementation details (microarchitecture design).

A TAIDL definition has two main components – the data model
definition and the instruction semantics. Next, we discuss the syntax
and terminology of TAIDL with the help of a simple example of
TPUv1 [71] and its instruction read_weights. In §4, we provide
more case studies showing the expressive power of TAIDL.

3.1 Data Model Definition

The data model in TAIDL is designed to be flexible enough to cover
a variety of storage units present in different tensor accelerators. It
consists of two types of storage units - tensor buffers and control
registers. Figure 3 shows the core syntax of the datamodel definition
in TAIDL. Figure 4 shows the data model for TPUv1.

data_model ::= tbuffers cregs

tbuffers ::= { [Id] (tshape) (element_type) }
tshape ::= 𝜖 | dims

dims ::= Int | dims × Int
element_type ::= dtype | dims × dtype

cregs ::= { Id = Int ; }

Figure 3: Core Syntax of Data Model in EBNF [109]. The

terminals are colored in brown.

1 # Data Model: Tensor Buffers
2 [unified_buffer] (96K) (256 xi8);
3 [accumulator] (4K) (256 xi32);
4 [weights] () (256 x256xi8);
5 [fifo] (4) (256 x256xi8);
6 # Data Model: Control Registers
7 occupancy = 0;
8 push = 0;
9 pop = 0;

Figure 4: TAIDL definition of TPUv1 [71] data model.

Tensor Buffers. The tensor buffers represent storage units that store
the input, output, and intermediate tensor data of an accelerator.
They are defined as multi-dimensional arrays of base elements. A
base element itself can be defined as a multi-dimensional data type.

Lines 2 to 5 of Figure 4 define the storage buffers of TPUv1. The
Unified Buffer in TPUv1 has 96K rows of 256-length vectors of
i8. Since the granularity of data access to the Unified Buffer is a
row, we model it as the base element. Thus, it is represented as a
one-dimensional buffer of size (96K) with base elements of (256xi8)
(line 2). The systolic array in TPUv1 performs weight-stationary
computation with a pre-loaded weight matrix (line 4). The FIFO
buffer is used to store weights before the systolic array loads them.
It holds a maximum of four 256×256 matrices of i8 (line 5).

Multi-dimensionality of tensor buffers and base elements plays
an important role in supporting various shapes and sizes of storage
units often observed in tensor accelerators (examples in §4.1-§4.2).

1320

https://openxla.org/xla/operation_semantics#element-wise_unary_functions
https://openxla.org/xla/operation_semantics#reduceprecision

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Jain et al.

Control registers. The control registers represent values in control
units that are exposed to programmer control. These values repre-
sent the state of the accelerator and control the execution of the
instructions. Semaphore registers (set/unset at asynchronous calls),
configuration flags (if user-controlled, like dataflow reconfigurable),
and counters are some use cases of control registers.

Lines 7 to 9 of Figure 4 show the registers that control the state
of the FIFO buffer in TPUv1. occupancy stores the number of layers
occupied in the FIFO buffer. push and pop store the indices of the
layers that are being pushed and popped from the FIFO buffer.

We discuss the reasoning behind separating the definition of
control registers and tensor buffers in §4.3.

Global Memory (HBM). Most accelerators have access to global
memory that can be accessed by the instructions. We refer to this
global memory as HBM (High Bandwidth Memory) hereafter. HBM
need not be explicitly defined in TAIDL. HBM is represented as a
one-dimensional buffer with base elements of (i8).

3.2 Instruction Semantics

The instruction semantics in TAIDL specifies the behavior of each
instruction in the accelerator ISA, without going into the imple-
mentation details of the accelerator. Figure 5 shows the core syntax
of instruction semantics in TAIDL. Figure 6 shows the semantics of
a TPUv1 instruction to load weights into the FIFO buffer.

isa ::= { instruction }
instruction ::= [Id] (attributes) compute

attributes ::= Id { , Id } | 𝜖
compute ::= block compute | stmt compute | 𝜖

block ::= repeat_block | if_block
repeat_block ::= REPEAT (lvar , aexp) { compute }

if_block ::= IF (bexp) { compute } ELSE { compute }
stmt ::= tb_read | tb_write | hlo_op | assign | assert

Figure 5: Core Syntax of Instruction Semantics in EBNF [109].

The terminals are colored in brown. aexp and bexp refer to an

arithmetic expression and a boolean expression, respectively.

lvar refers to a local variable name.

1 [read_weights] (addr)
2 assert(occupancy < 4);
3 %In:65536 xi8 <- $hbm[addr:addr+65536];
4 %Out:1 x256x256xi8 = reshape(%In);
5 %Out:1 x256x256xi8 -> $fifo[push];
6 occupancy = occupancy + 1;
7 push = (push + 1) % 4;

Figure 6: TAIDL definition of a TPUv1 [71] instruction.

Calling Attributes. Each instruction in the accelerator ISA can take
inputs as operands, similar to the register numbers in a RISC-V
instruction. We refer to these inputs as calling attributes, and any
stream of instructions written in the ISA contains these attributes.
For example, the calling attribute to read_weights is the HBM
address (addr) from which the weights are to be read (line 1).

Tensor Computation. The compute of an instruction is defined as a
tensor computation on data stored in the tensor buffers and HBM.
They can refer to the calling attributes, tensor buffers, and control
registers. In addition to operational semantics, an instruction also
needs to satisfy certain constraints to avoid undefined behavior.

In TAIDL, we model these as five types of statements:
• Tensor Read: tb_read statement reads a slice from a tensor buffer
and writes to a tensor intermediate (line 3). TAIDL supports
Python-like array slicing syntax.
• TensorWrite: tb_write statement updates a slice of a tensor buffer
with values from a tensor intermediate (line 5).
• Tensor Operation: hlo_op statement performs a tensor opera-
tion on a tensor intermediate and writes to another tensor inter-
mediate (line 4). TAIDL supports tensor operations present in
XLA-HLO IR. We discuss this choice with examples in §4.4.
• Control Register Assignment: assign statement updates the value
of a control register. The assignment value is an expression over
calling attributes and control registers (lines 6 and 7).
• Assertion: assert statement specifies the constraints that must be
satisfied for an instruction to be valid. It is a Boolean expression
over calling attributes and control registers (line 2).

The compute is further augmented with IF and REPEAT blocks to
support instructions with dynamic shapes and control flow. We
discuss the role of this augmentation in §4.5.

4 Expressivity of TAIDL

We demonstrate the expressive power of TAIDL by showing how
each design choice covers various nuances observed in existing ten-
sor accelerator designs. We present interesting snippets of TAIDL
definitions with the complete definitions available in the artifact.

4.1 Supporting Multi-dimensional Base-types

We observe that tensor accelerators perform computations on multi-
dimensional data present in tensor buffers. Without support for
multi-dimensional base-types, the semantics of every instruction
have to reshape the data before performing any computation over
it. Thus, we design TAIDL to support multi-dimensional base-types,
making the instruction semantics compact and easy to understand
by avoiding complex address computations.

1 # Data Model: AMX Tile and AVX -512 Register file
2 [tiles] (8) (16 x64xi8); # 8 AMX Tile registers
3 [zmm] (32) (16 xf32); # 32 AVX -512 registers

Figure 7: TAIDL definition of Intel AMX&AVX-512 registers.

Figure 7 models Intel AMX tiles and AVX-512 registers in TAIDL.
Each tile can hold up to 16 rows with up to 64 bytes per row. Instead
of representing a tile as a buffer of 1024 bytes, TAIDL allows it to
be represented as a 2-dimensional base type of 16x64xi8 (line 2).

4.2 Supporting Multi-dimensional Addressing

Several data buffers found in tensor accelerators are partitioned into
parallelly-accessed banks and also support strided accesses. Keep-
ing this in mind, we design TAIDL to support multi-dimensional
addressing as an extension to commonly observed 1-dimensional
addresses. This simplifies address computation for data accesses.

1 # Data Model: MXU FIFO Buffers for TPUv2
2 [MXU_in_fifo] (1,256) (128 xf32);
3 # Data Model: MXU FIFO Buffers for TPUv3
4 [MXU_in_fifo] (2,256) (128 xf32);
5 # Instruction Semantics using MXU
6 %In:1 x256x128xf32 <- MXU_in_fifo[mxu_id, 0];

Figure 8: TAIDL definition of TPU MXU FIFO buffers.

1321

TAIDL: Tensor Accelerator ISA Definition Language with Auto-generation of Scalable Test Oracles MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

Figure 8 shows a snippet of the TAIDL definition of the MXU
buffers for TPUv2 (line 2) and TPUv3 (line 4). The TAIDL definition
takes advantage of the multi-dimensional addressing construct by
adding another dimension to the MXU FIFO buffers, representing
the MXU id (analogous to the batch dimension in batch processing).

4.3 Tensor Buffers vs. Control Registers

Tensor buffers and control registers represent two different types of
data stored on an accelerator. Control register values are indepen-
dent of the input tensor data for a computation graph. Therefore,
they can be statically analyzed at the time of simulation. However,
the computation performed by an instruction is determined by
the control registers, like configuration flags. Therefore, the data
stored in tensor buffers depends on both the control registers and
input tensor data. This characteristic means that an accelerator
contains two types of data – one that can be statically analyzed at
simulation-time and one that is dependent on the input tensor data.

Revisiting the TPUv1 data model in Figure 4, the data present in
the unified buffer, accumulator buffer, systolic array weight matrix,
and FIFO weights buffer (lines 2 to 5) varies based on the program
data. Whereas the values of occupancy, push, and pop registers
(lines 7 to 9) are constant for a particular code segment.

4.4 Modeling compute using XLA-HLO

One of the key design goals of TAIDL is to express the intent of the
instructions without delving into the microarchitectural details. We
observe that the computations done by an instruction of a tensor
accelerator are primarily multi-dimensional tensor computations
over the tensor buffers. Thus, the requirements for the compute

syntax are that it should provide a high-level description, abstract
the implementation details of the accelerator, and be flexible enough
to define any fixed-shape multi-dimensional tensor computation.
These requirements are satisfied by the rich operator set present in
XLA-HLO IR used in the XLA compiler.

Revisiting Figure 2, the TAIDL definition for an AMX instruction
uses operators bitcast-convert3 & reshape to load and store tile reg-
isters, operators reshape& transpose for layout transformation, and
operators dot-general & convert for precise matrix multiplication.

C[0:3]

C[4:7]
W[0]

C[0:3]
W[1]

...

W[15]

H[0]

C[4:7]

...

C[0:3]

...
W[0]H[1]

4

2048

W[0:3]

W[4:7]
H[0]

W[8:11]

...

H[63]

C[0]

W[0:3]

...

W[4:7]

...

H[0] C[1]

4

W[12:15]

HWC_C4 CHW_W4

C[4:7]

1 [switch_layout] (addr, C, H, W) # Shape set dynamically
2 %T1:(C*H*W/4) x4xf32 <- $buffer[addr, 0] # Initial: HWC_C4
3 %T2:HxWxCxf32 = reshape(%T1)
4 %T3:CxHxWxf32 = transpose(%T2, dim={2,0,1})
5 %T4:(C*H*W/4) x4xf32 = reshape(%T3)
6 %T4:(C*H*W/4) x4xf32 -> $buffer[addr, 0] # Final: CHW_W4

Figure 9: TAIDL definition for switching data layouts from

HWC_C4 to CHW_W4 (visualized for C = 8, H = 64, W = 16).
3https://openxla.org/xla/operation_semantics#bitcastconverttype

Figure 9 shows the TAIDL definition of an instruction that switches
data layout from channel-last (HWC_C4) to row-major (CHW_W4).
It extensively uses XLA-HLO operators to convert the data layout
into the original matrix and back to the target data layout. This in-
struction can be implemented using theMemory Layout Unit (MLU)
in MTIA chips [24, 49] or the BIRRD network in FEATHER [114].
This is a prime example where we have described the meaning of
the instruction without diving into its implementation details.

4.5 Augmenting IF and REPEAT blocks

Recall from §3 that TAIDL models programmer-exposed accelerator
state like configuration flags as control registers and instruction
side-effects as assignments to these control registers (assign).

While XLA-HLO can represent control flow over tensor data
stored in tensor buffers, it is not sufficient to represent control flow
parameterized by the calling attributes and the control registers.
We solve this by augmenting compute with IF and REPEAT blocks.
1 [config_execute_dataflow] (new_dataflow_value)
2 dataflow_flag = new_dataflow_value
3
4 [matmul_compute_preloaded] (rs1, rs2)
5 IF (dataflow_flag == 0) {
6 ... # tensor computation for output -stationary
7 } ELSE {
8 ... # tensor computation for weight -stationary
9 }

Figure 10: TAIDL definition of Gemmini [51] instructions

that model switching of dataflow via a control register.

IF block. An IF block represents conditional branching, allowing for
different tensor operations to be executed based on the accelerator
state. The argument to an IF block is a boolean expression over
calling attributes and control registers (Figure 5). This is useful
for several instructions in Gemmini ISA [102] where the instruc-
tion definition is overloaded for multiple dataflow configurations.
Figure 10 shows a snippet of the TAIDL definition of a Gemmini in-
struction that performs a different operation based on the dataflow
configuration, which is modeled as a control register dataflow_flag.
1 [tdpbusd] (dst, src0, src1)
2 REPEAT (m, 16) {
3 REPEAT (k, 16) {
4 REPEAT (n, 16) {
5 ... # perform vector dot -product on 4 bytes 1○
6 }
7 }
8 }

Figure 11: Alternate TAIDL definition of AMX instruction

tdpbusd (Figure 2) using nested REPEAT blocks. The inner

loop body 1○ is a vector-vector dot-product on 4 bytes of input

tiles. We skip the inner loop body definition for brevity.

REPEAT block. A REPEAT block is used to repeat a tensor operation.
Syntactically, the argument to the REPEAT block is an arithmetic
expression over calling attributes and control registers (Figure 5).
Figure 11 shows an example of a TAIDL definition with nested RE-
PEAT blocks. Given XLA-HLO’s rich operator set, most instances of
REPEAT blocks have equivalent semantics without REPEAT blocks.
For example, TAIDL definition of AMX instruction tdpbusd in Fig-
ure 11 is semantically equivalent to the compact definition without
REPEAT blocks in Figure 2 (b). We have not observed a case where
an instruction semantics necessitates the usage of REPEAT blocks.

1322

https://openxla.org/xla/operation_semantics#bitcastconverttype

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Jain et al.

5 Modeling semantics of new ISAs using TAIDL

We discuss key language properties that enable and assist architects
to define the semantics of new tensor accelerator ISAs in TAIDL.

5.1 Theoretically complete

Theoretically, the XLA-HLO operator set is Turing-complete. XLA-
HLO supports an unbounded number of dimensions and an un-
bounded dimension sizes. It also includes select4 and while5 opera-
tors, allowing for conditional branching and unbounded loops. This
makes XLA-HLO a superset of FLooP [55], a theoretical program-
ming language that is proven to be a Turing-complete language.
Therefore, TAIDL can express all computable functions.

5.2 Semantically precise

Precise operational semantics. XLA-HLO and its MLIR dialect Sta-
bleHLO support 30+ integer and floating-point datatypes, including
variations of 4-bit and 8-bit formats with detailed operational se-
mantics [33, 34] following standards defined in [1, 94, 98, 112].
These rich documentations detail bit-precise behavior for these ten-
sor operators, including standards for overflow, underflow, round-
ing. For example, element-wise tensor operator ceil follows the
IEEE-754 standard [1] and rounds to the integral towards positive.
TAIDL inherits these bit-precise semantics, enabling architects to
exactly define the intent of an instruction, up to bit-level precision.

Mixed precision using type casting. XLA-HLO includes bit-precise
type conversion operators like convert6 (analogous to static_cast
in C++), allowing precise modeling of mixed precision compute
using higher precision types. For example, Intel AMX instruction
tdpbusd performs computation on unsigned and signed int8 values
and accumulates them in signed int32 values. Due to overflow,
accumulating them in int8 and int32will have different results, with
the latter being the intended computation. The TAIDL definition in
Figure 2 (b) precisely captures this using convert operators, which
promote int8 and uint8 to int32 before matrix multiplication.

Custom mixed precision. Reduction operators in XLA-HLO like
dot_general also support user-defined accumulation algorithms,
allowing precise modeling of overflow/underflow behavior.

5.3 Integrated with ML ecosystem

OpenXLA [32], supported by several industry partners including
Google and NVIDIA, is widely adopted by popular ML frameworks
like JAX, TensorFlow, PyTorch. TAIDL supports tensor operators in
OpenXLA’s XLA-HLO (and its MLIR dialect StableHLO) to leverage
this broad community support and rich documentation [33, 34]
with examples, which assists in writing new TAIDL definitions.

TAIDL inherits several benefits from XLA-HLO, which is at
the core of the fast-evolving ML ecosystem. XLA-HLO quickly
adopts novel precision controls and datatypes proposed in literature.
For example, num_primitive_operations attribute was added to
XLA-HLO operator dot_general7 to precisely model novel higher
precision accumulation algorithms like bf16_6x proposed in [53].
4https://openxla.org/xla/operation_semantics#select
5https://openxla.org/xla/operation_semantics#while
6https://openxla.org/xla/operation_semantics#convertelementtype
7https://openxla.org/stablehlo/spec#dot_general

5.4 Backward compatible: scalar & bit-vector

Existing instruction specification languages like Sail [52] and ven-
dor pseudocode formats like Intel Intrinsics Guide [37] represent
instruction semantics as C-style scalar code with FOR & IF state-
ments. Prior formal models [22, 46] use fixed-length bit-vectors to
precisely model instruction semantics. TAIDL is backward com-
patible with both scalar and bit-vector representations, allowing
architects to incorporate their preferred semantic model.

Scalar. Recall from §2.4 that element-wise XLA-HLO operators are
rank-agnostic and also support scalars since scalars are essentially 0-
D tensors. Hence, TAIDL can represent vendor pseudocode formats
using these rank-agnostic element-wise tensor operators (see §2.4)
with select & while operators in XLA-HLO for tensor buffers and
IF & REPEAT blocks in TAIDL for control registers.

Bit-vector. TAIDL can represent tensors as bit-vectors (i.e., 1-D
tensors of i1), using bitcast_convert operator as shown in Figure 12.
XLA-HLO supports all primitive bit-vector operations present in
bit-vector libraries like std::bitset, Grisette.*.BitVector [90].

1 # %In:16 xf32 is a zmm register
2 %T0:16 x32xi1 = bitcast_convert(%In)
3 %In.bv:512xi1 = reshape(%T0)
4 # %In.bv is the bit -vector representation of %In
5 ... # Bit -vector semantics over %In.bv

Figure 12: Usage of bitcast_convert to represent bit-vectors.

5.5 Forward compatible: custom datatypes

We note that future designs may use different precision levels and
non-standard formats for storage and/or intermediaries. TAIDL
provides three mechanisms for handling custom datatypes.

(1) Manual precision and rounding control. XLA-HLO operators like
reduce_precision8, round_nearest_afz, clamp can be used before
and after other operators to control numeric precision and rounding
modes of tensor computations. Figure 13 shows an example of
precisely representing floating-point conversion with an arbitrary
number of exponent (𝐸 ≥ 1) and mantissa (𝑀 ≥ 0) bits, where an
FP16 value of 0.395264 is converted to a less precise FP8 (E4M3)
value of 0.40625. The FP8 (E4M3) is stored on FP16 registers with
zero padding for precise functional simulation on CPU and GPU.

1 # %T0: FP16 [exponent ='01101', mantissa = '1001010011 ']
2 # %T1: FP8 E4M3 [exponent ='0101', mantissa ='101']
3 %T1:f16 = reduce_precision(%T0, E=4, M=3)
4 # Stored as [exponent ='00101', mantissa = '0000000101 ']

Figure 13: Usage of reduce_precision to control numeric pre-

cision of floating-point data (LHS bits = 𝐸 +𝑀 + 1 (for sign)).

(2) Custom quantized formats. Architects can define their custom
quantized formats using StableHLO type definition !quant.uniform
with quantization parameters like storage type, zero-point, scale.

(3) Custom bit-precise implementation. Since XLA-HLO is Turing-
complete (§5.1) and also supports bit-vector semantics (§5.4), archi-
tects can define custom XLA-HLO functions and access them via
XLA-HLO operator call. Alternatively, architects can define external
C functions that perform bit-precise computation and access them
via XLA-HLO operator custom_call within a TAIDL definition.
8https://openxla.org/xla/operation_semantics#reduceprecision

1323

https://openxla.org/xla/operation_semantics#select
https://openxla.org/xla/operation_semantics#while
https://openxla.org/xla/operation_semantics#convertelementtype
https://openxla.org/stablehlo/spec#dot_general
https://openxla.org/xla/operation_semantics#reduceprecision

TAIDL: Tensor Accelerator ISA Definition Language with Auto-generation of Scalable Test Oracles MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

Compile

§6.4

Transform

§6.3

Kernel

Function

§6.2

XLA-HLO

Graph

Simulate

§6.5

Serialized

Executable (.pb)

@amx.kernel(...)

def matmul_amx():

 ...

 amx.api.tdpbusd(...)

 ...

matmul_amx.compile()

Architect's View Programmer's View

Generate

§6.1

Data Model

[tiles] (8) (16x64xi8);

[zmm] (32) (16xf32);

instructions

[tdpbusd](dst, src1, src2)

%In1:... <- $tiles[...]

...

Test Oracle

Library

TAIDL

Definition

AMX Module

def kernel(...):

 ...

class api:

 ...

 def tdpbusd(...):

 ... matmul_amx.run(input)

Test

Result

NumPy

Input

Data

Figure 14: An ISA-specific test oracle library TAIDL-TO is generated from architect-provided ISA defined in TAIDL. A kernel

programmer uses this library to write low-level kernels, which are then compiled and simulated using the generated test oracle.

6 ISA-specific Test Oracles (TAIDL-TOs)

Figure 14 shows the architect’s and programmer’s views of TAIDL
and the generated test oracle TAIDL-TO. A computer architect only
needs to define the ISA using TAIDL. This will automatically gener-
ate an ISA-specific test oracle TAIDL-TO which can be provided to
kernel programmers. A kernel programmer can test the correctness
of their low-level kernels using this generated test oracle.

6.1 Architect’s View: Generating Oracle library

TAIDL is designed as a Python library to define ISA semantics and
to generate test oracles. We select Python as the host language since
it is popular in the ML community and has a rich set of libraries
like NumPy. A computer architect defines ISA semantics using
the provided TAIDL library and triggers the generation of an ISA-
specific Test Oracle library for the software. The generated library
can be used by kernel programmers to test their assembly code.

6.2 Programmer’s View: Kernel Function

1 @amx.kernel(
2 size=3072, # Valid HBM addresses are [0 ,3072)
3 arg=[# HBM addresses of input tensor(s) and shape
4 {"start": 0, "shape": (16, 64, np.int8)},
5 {"start": 1024, "shape": (16, 64, np.int8)},
6],
7 res=[# HBM addresses of output tensor(s) and shape
8 {"start": 2048, "shape": (16, 16, np.int32)},
9]
10)
11 def matmul_amx():
12 amx.api.tilezero(dst=0)
13 amx.api.tileloadd(dst=4, base=0, stride=64)
14 amx.api.tileloadd(dst=6, base=1024, stride=64)
15 amx.api.tdpbusd(dst=0, src0=4, src1=6)
16 amx.debug(prefix="tmm0: ", data=amx.tiles [0])
17 amx.api.tilestored(src=0, base=2048, stride=64)

Figure 15: Matrix multiplication kernel using the test oracle

library generated from TAIDL definition of Intel AMX.

An ISA-specific assembly code is written as a kernel function

using the generated ISA-specific Test Oracle library. A kernel func-
tion is a Python function with the decorator @kernel. Figure 15
shows a simple kernel function matmul_amx using the test oracle
library auto-generated for Intel AMX. The function stack of the
kernel is 3kB (line 3) with two input INT8 tensors of shape 16×64
(lines 5 and 6) and one output INT32 tensor of shape 16×16 (line 9).

The choice of writing kernel functions in Python enables easy
integration with ML frameworks like TensorFlow and PyTorch. Ker-
nel programming languages like JAX Pallas [27], AWSNKI [65], and
Triton [113] also provide a Python interface to write low-level ker-
nels. These kernel programming languages are hardware-specific
(Google TPUs, AWS Trainium, GPUs, respectively), whereas TAIDL-
TOs are auto-generated for every accelerator ISA written in TAIDL.

6.3 Novel Transformation Algorithm

1 def transform(instrs):
2 state = init_cregs () A○
3 hlo_txt = prologue () B○
4 for instr in instrs:
5 attr = instr.attr # calling attributes
6 compute = instr.compute # Tensor compute
7 compute = compute.resolve(attr , state) C○
8 stmts = expand_blocks(compute) D○
9 for stmt in stmts:
10 if stmt.op == TENSOR_BUFFER_READ: E○ (𝑡𝑏_𝑟𝑒𝑎𝑑)
11 hlo_txt += gen_slice(stmt)
12 elif stmt.op == TENSOR_BUFFER_WRITE: F○ (𝑡𝑏_𝑤𝑟𝑖𝑡𝑒)
13 hlo_txt += gen_dy_up_slice(stmt)
14 elif stmt.op == XLA_HLO_TENSOR_OP: G○ (ℎ𝑙𝑜_𝑜𝑝)
15 hlo_txt += stmt
16 elif stmt.op == ASSIGN_STMT: H○ (𝑎𝑠𝑠𝑖𝑔𝑛)
17 state = state.update(stmt)
18 elif stmt.op == ASSERT_STMT: I○ (𝑎𝑠𝑠𝑒𝑟𝑡)
19 assert(stmt)
20 hlo_txt += epilogue ()
21 return hlo_txt
22
23 def expand_blocks(compute):
24 stmts = []
25 for block in compute:
26 if block.op == REPEAT_BLOCK: J○
27 for i in range(block.iter):
28 stmts += expand_blocks(block.body(i))
29 elif block.op == IF_BLOCK: K○
30 sel = select(block , block.condition)
31 stmts += expand_blocks(sel)
32 else:
33 stmts += block
34 return stmts

Figure 16: Transforming an ISA-specific kernel function into

a tensor computation graph in XLA-HLO IR.

Figure 16 shows the pseudocode for transforming a kernel func-
tion into an XLA-HLO IR representing a semantically equivalent
tensor computation. The algorithm (transform) transforms a stream
of instructions (instrs) into a tensor computation graph (hlo_txt).

1324

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Jain et al.

It first initializes the control registers (state) (A○) and generates
the prologue of the tensor computation graph (B○). The prologue
consists of the initialization of the tensor buffers and the HBM. It
then processes the stream of instructions in sequential order.

Since the expressions in compute are only the functions of calling
attributes and control registers, they can be resolved by constant
propagation (C○). This is followed by recursively expanding the
blocks in the compute into a list of statements (D○). The REPEAT
blocks are unrolled (J○) while the IF blocks select the appropriate
branch (K○). It then translates the list of statements (stmts) into
XLA-HLO syntax. The tensor buffer reads and writes are converted
into XLA-HLO slice9 and dynamic_update_slice10 operators (E○
and F○). The XLA-HLO tensor operations are appended to the
tensor computation graph as is (G○). The assignment statements
update the control registers (state) (H○). The assertion statements
are evaluated (I○). It finally returns the tensor computation as a
XLA-HLO graph, which then can be compiled by the XLA compiler.

In summary, 𝑎𝑠𝑠𝑖𝑔𝑛 and 𝑎𝑠𝑠𝑒𝑟𝑡 statements on control registers
and calling attributes are statically analyzed via constant folding,
while 𝑡𝑏_𝑟𝑒𝑎𝑑 and 𝑡𝑏_𝑤𝑟𝑖𝑡𝑒 on tensor buffers are replaced by slice
and dynamic_update_slice operators with no changes to ℎ𝑙𝑜_𝑜𝑝 .

1 # TAIDL: %In:65536 xi8 <- $hbm[addr:addr+65536];
2 # Case 𝑡𝑏_𝑟𝑒𝑎𝑑: transformed to slice (E○)
3 %In = i8 [65536] slice(hbm .0), slice_dim ={[0:65536:1]}
4 # TAIDL: %Out:1 x256x256xi8 = reshape(%In);
5 # Case ℎ𝑙𝑜_𝑜𝑝: stays as is (G○)
6 %Out = i8[1 ,256 ,256] reshape(%In)
7 # TAIDL: %Out:1 x256x256xi8 -> $fifo[push];
8 # Case 𝑡𝑏_𝑤𝑟𝑖𝑡𝑒: transformed to dynamic_update_slice (F○)
9 update_loc = i32[] constant (2) # Current value of push
10 fifo.1 = i8[4 ,256 ,256] dynamic_update_slice(fifo.0,

%Out, update_loc, 0, 0)

Figure 17: Snippet of XLA-HLO IR emitted by the trans-

formation algorithm (Figure 16) for TPUv1 instruction call

read_weights(addr=0) when control register set push is 2.

Figure 17 shows a snippet of the XLA-HLO graph emitted by
TAIDL-TO for TPUv1 instruction read_weights. Instruction seman-
tics in Figure 6 are transformed into XLA-HLO operators one-by-
one. Control registers (push) and attributes (addr) are statically
analyzed and known when emitting XLA-HLO IR for an instruction.

6.4 Programmer’s View: Compiling the Oracle

matmul_amx.compile() is called to compile the kernel function
matmul_amx into an executable. First, the kernel function is trans-
formed into a XLA-HLO graph using the transformation algorithm
discussed in §6.3. The XLA-HLO graph is then compiled into an
executable using the XLA compiler present in jaxlib library. XLA
generates a serialized executable in protobuf format (.pb). XLA sup-
ports GPU as a backend platform, allowing for GPU-accelerated
simulations using the generated test oracle library.

6.5 Programmer’s View: Running the Oracle

A compiled kernel function can be directly invoked as a callable
Python function, allowing for easy integration within an ML model.
For example, C = matmul_amx.run(A, B) loads the compiled exe-
cutable with the input tensors A and B and stores the result in C.
9https://openxla.org/xla/operation_semantics#slice
10https://openxla.org/xla/operation_semantics#dynamicupdateslice

The input tensors are NumPy arrays that are passed as arguments
to the kernel function invocation. The simulation is executed on
CPU or GPU, based on the backend platform used for compilation.

1 def forward(A: np.ndarray , B: np.ndarray):
2 C = matmul_amx.run(A,B) # Simulate AMX on TAIDL -TO
3 D = np.maximum(0,C) # Execute host code natively
4 X = nn_gemmini.run(A,B) # Simulate Gemmini on TAIDL -TO
5 assert ((D == X).all()) # Execute host code natively

Figure 18: Python function simulating multiple kernel func-

tions (treated as a callable function) integrated with host

code, which is executed using the native Python interpreter.

TAIDL-TO supports simulation of multiple kernel functions in-
tegrated with host code as shown in Figure 18. Similar to Intel SDE,
TAIDL-TO only simulates accelerator instructions and executes the
host code natively using the default Python interpreter.

TAIDL-TO also provides debugging capabilities. A programmer
can add debug locations within a kernel function (Figure 15 line 17)
to log the values stored in scratchpads and control registers. This
is similar to nki.language.device_print [66] provided by AWS NKI.

6.6 Discussion

Scalability. TAIDL’s design choice of using XLA-HLO for instruc-
tion semantics plays a key role in making TAIDL-TO scalable for
large kernels. This allows us to automatically generate TAIDL-TO
that uses XLA-HLO IR, a domain-specific IR for tensor computa-
tions, and compiles using tensor compilers like XLA. Additionally,
XLA automatically generates highly parallelized executables that
take advantage of multi-threading as well as GPU acceleration.
We evaluate the scalability of TAIDL-TOs generated from TAIDL
against existing instruction-level test oracles in §7.

Retargetability. The novel transformation algorithm in Figure 16 is
parameterized by TAIDL constructs like the instruction semantics
(instr.compute) and data model (prologue), making it retargetable
to any accelerator ISA written in TAIDL. This minimizes the effort
needed to develop scalable test oracles for new tensor accelerators.

Software Readiness. TAIDL-TO enables early development of ac-
celerator software libraries and compiler backends by providing a
functional kernel library that mimics the target ISA. During the pre-
silicon phase, these software components are written and tested
using TAIDL-TO. The resulting software is forward-compatible
and can be reused on post-silicon chips. For instance, x86 assem-
bly code can be generated from Figure 15 by removing “amx.api.”.
Thus, TAIDL-TO promotes software readiness by bridging the gap
between architecture prototyping and production deployment.

7 Scalability of Auto-generated TAIDL-TOs

We evaluated the scalability of the auto-generated TAIDL-TOs by
comparing the simulation time of the generated TAIDL-TOs against
the existing instruction-level test oracles – Gemmini Spike and Intel
SDE. Gemmini Spike [103] is a RISC-V ISA simulator that models
the Gemmini ISA [102]. Intel SDE [39] is a binary translation-based
simulator that models the x86 ISA [37]. We selected these two sim-
ulators based on the availability of well-documented ISA semantics,
open-source correctness testing infrastructure, and the granularity
of simulation (instruction-level) and precision (bit-precise).

1325

https://openxla.org/xla/operation_semantics#slice
https://openxla.org/xla/operation_semantics#dynamicupdateslice

TAIDL: Tensor Accelerator ISA Definition Language with Auto-generation of Scalable Test Oracles MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

1 KB 10 KB 100 KB
Kernel size

10 1

100

101

102

103

104

Si
m

ul
at

io
n

tim
e

(in
 m

s)

(a) DIM = 16
Gemmini Spike
TAIDL-TO (GPU)
TAIDL-TO (CPU)

20 KB 100 KB 800 KB
Kernel size

88x

620x

(b) DIM = 64

300 KB 1 MB 3 MB
Kernel size

1200x

5600x

(c) DIM = 256

TAIDL-TO for Gemmini ISA vs. Gemmini Spike

Figure 19: The simulation time (lower is better) for the tiled matrix multiplication kernel on TAIDL-TO and Gemmini Spike.

The X-axis represents the kernel size, i.e., the total size of input and output tensors. Both axes are log-scaled. TAIDL-TO (GPU)

is slower than TAIDL-TO (CPU) for DIM = 16 due to limited parallelization opportunities, but scales better as kernel size grows.

7.1 Experimental Setup

TAIDL-TO Generation. We defined TAIDL for Gemmini ISA and
Intel AMX/AVX-512 instructions based on the respective ISA man-
uals [37, 102] and auto-generated TAIDL-TOs as discussed in §6.

Machine Setup. We used a GPU server machine with a 64-core Intel
Xeon Platinum 8358 CPU and NVIDIA A100 GPU for all evalu-
ations. In §7.2, we evaluated the performance of TAIDL-TO and
Gemmini Spike on the tiled matrix multiplication benchmark. In
§7.3, we evaluated the performance of TAIDL-TO and Intel SDE on
benchmarks from the Intel oneAPI Deep Neural Network Library
(oneDNN) [50]. We compiled two versions of TAIDL-TO, one each
with XLA GPU backend (labeled as “TAIDL-TO (GPU)”) and XLA
CPU backend (labeled as “TAIDL-TO (CPU)”). We observed that
simulations using Intel SDE and Gemmini Spike do not utilize GPU.

Metrics. We measured the average simulation time (in millisec-
onds) across multiple runs. Simulation time of only accelerator
instructions is measured. We evaluated scalability by varying the
benchmark kernel size, i.e., the total size of input and output tensors.

Simulation correctness. In addition to the scalability analysis of
TAIDL-TOs, we also tested whether the output generated is func-
tionally correct. For Gemmini benchmarks, we tested the TAIDL-TO
outputs against Gemmini’s RTL simulation (or Gemmini Spike if
RTL simulation takes more than an hour). For Intel oneDNN bench-
marks, we tested the output of TAIDL-TOs against native execution
on a Sapphire Rapids machine (Intel Xeon Gold 5415+ CPU). The
outputs matched exactly to that of baselines, i.e., are bit-accurate.

7.2 Gemmini Spike

Gemmini Spike [103] is a RISC-V ISA simulator [104] extension
that models the Gemmini ISA [102], parameterized by the systolic
array size DIM. We configured DIM as 16 (default), 64, 256, 1024.
This only requires a single-line TAIDL change. Effectively, we eval-
uated four TAIDL-TOs against corresponding four Spike instances.

Benchmark Selection. The default Gemmini kernel library primarily
supports tiled matrix multiplications and convolutions. Therefore,
we chose the benchmark kernel as tiled matrix multiplication of the
form𝐶 = 𝐴×𝐵 +𝐷 , where𝐴,𝐶, 𝐷 are of shape (𝐼 ·DIM) ×DIM, for
some 𝐼 , and𝐵 is of shapeDIM×DIM. We varied 𝐼 in powers of 2 from
𝐼𝑚𝑖𝑛 = 1 until the scratchpad ran out of space, i.e., 𝐼𝑚𝑎𝑥 ·DIM = 4096.

We observed similar simulation times for weight-stationary and
output-stationary dataflow, with the latter used for reporting results.
In §8.1, we discuss more complex kernels compiled using Exo [57].

Results & Observations. Figure 19 compares the performance of
TAIDL-TO and Gemmini Spike simulator as kernel size increases for
different configurations of DIM. We observed that the simulations
using TAIDL-TO are orders of magnitude faster than Gemmini
Spike for all configurations. The performance speedup increases as
the kernel size increases, indicating the scalability of TAIDL-TO.
For DIM = 1024, Gemmini Spike took over a minute for a simple
matrix multiplication of size 1024×1024, whereas TAIDL-TO took
only 9ms and 4ms on CPU and GPU (4 orders of magnitude faster).
We discuss the reasons for these large speedups in §7.4.

7.3 Intel SDE

Intel SDE is an emulator for Intel ISA extensions built on the Pin [10]
dynamic binary instrumentation framework. Pin examines each
static instruction in a program and asks Intel SDE if the instruction
should be emulated or run natively. If an instruction is to be emu-
lated, the Pin replaces it with a branch to an appropriate emulation
function. We set Intel SDE to emulate only Intel AMX and AVX-512
instructions using sde64 -spr -force_emulate skx. Rest of the x86
instructions, including AVX2 and non-SIMD, are executed natively.

Benchmark Selection. The Intel oneAPI Deep Neural Network Li-
brary (oneDNN) [50] is a deep learning library optimized for In-
tel processors, generating specialized implementations of certain
kernels. In compiled oneDNN programs, we observed five recur-
ring patterns of AMX and/or AVX-512 instructions – each pattern
consists of repeated blocks differing only in memory addresses ac-
cessed. We used these five patterns as the benchmark kernels – two
AMX-only, two AVX-512-only, and one mixed (AMX & AVX-512).

Benchmark

#BLOCKS = 4 #BLOCKS = 256
#AMX #AVX-512 #AMX #AVX-512

cnn_inf_amx 40 0 2056 0
rnn_inf_amx 24 0 1284 0
sgemm_avx 0 238 0 9058

mem_format_avx 0 232 0 11320
cnn_inf_mix 40 116 2056 7172

Table 2: Statistics of the selected oneDNN kernel benchmarks

1326

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Jain et al.

20 KB 100 KB 600 KB
Kernel size

10 1

100

101

102

Si
m

ul
at

io
n

tim
e

(in
 m

s)

(a) cnn_inf_amx

20 KB 100 KB 600 KB
Kernel size

(b) rnn_inf_amx

20 KB 100 KB 600 KB
Kernel size

(c) cnn_inf_mix

5 KB 10 KB 50 KB
Kernel size

10 1

100

101

102

Si
m

ul
at

io
n

tim
e

(in
 m

s)

(d) sgemm_avx

3 KB 10 KB 30 KB
Kernel size

(e) mem_format_avx

TAIDL-TO for Intel AMX & AVX-512 vs. Intel SDE

Intel SDE
TAIDL-TO (GPU)
TAIDL-TO (CPU)

Figure 20: The simulation time (lower is better) for the five selected oneDNN kernel benchmarks on Intel SDE and TAIDL-TO.

The X-axis represents the kernel size, i.e., the total size of input and output tensors. Both axes are log-scaled. Similar to Figure 19,

TAIDL-TO (GPU) is slower than TAIDL-TO (CPU) due to limited parallelization opportunities and kernel launch overhead.

Table 2 provides the statistics of the instruction sequences in each
benchmark. Each benchmark repeats its instruction sequence across
multiple blocks, with the number of blocks (#BLOCKS) varying
from 4 to 256 in powers of 2. The memory footprint scales linearly
with #BLOCKS, as each block accesses a distinct memory region.

Results & Observations. Figure 20 compares the performance of
TAIDL-TO and Intel SDE for selected benchmarks.We observed that
the simulations using TAIDL-TO are significantly faster than Intel
SDE for all benchmarks on CPU and three out of five benchmarks
on GPU (except sgemm_avx and mem_format_avx).

7.4 Discussion: Performance Gains

We observed that the simulations using TAIDL-TO are orders of
magnitude faster than the existing test oracles – Gemmini Spike
and Intel SDE. The performance gains can be attributed to two
main reasons – tensor optimizations and automatic parallelization
of TAIDL-TO with the help of the XLA compiler.

Tensor optimizations. TAIDL defines the ISA semantics using XLA-
HLO operators, which allows us to generate TAIDL-TO in a high-
level XLA-HLO IR that can be optimized by domain-specific tensor
compilers like XLA [31]. The generated TAIDL-TO leverages the op-
timizations present in the tensor compiler, such as operator fusion,
algebraic simplification [35], and memory tiling & layout optimiza-
tions. Hand-crafted test oracles, like Gemmini Spike, are written
in C++ with nested loops and conditionals. General-purpose com-
pilers used to compile these simulators, like GCC or Clang, only
offer limited optimizations across loops. Therefore, the generated
TAIDL-TOs are more optimized than the existing counterparts.

Automatic parallelization. Hand-crafted test oracles are typically
single-threaded and do not leverage the parallelism offered by mod-
ern multi-core CPUs or GPUs to speed up the simulations. While
multi-threading can be added to these simulators using libraries
like OpenMP [45], it requires manual effort to identify parallelizable

regions and add synchronization primitives. On the other hand,
TAIDL-TO, due to its high-level IR representation, can be easily
parallelized using tensor compilers like XLA that can automatically
generatemulti-threaded code andGPU kernels. These optimizations
include loop parallelization, vectorization, and memory coalescing.

Breakdown analysis of simulation.We performed a breakdown anal-
ysis of the generated simulations for oneDNN kernels (Table 2).
We observed that matrix multiply only constituted a small portion
(∼7%) of the simulation code. The simulation was dominated by
memory read/write (33-60%) and layout transformations (16-60%).
As a result, XLA optimizations are highly effective in making gen-
erated TAIDL-TOs orders of magnitude faster and more scalable.

Note that the performance gains are not specific to the simulators
we evaluated but are a general trend observed across different ISAs
and benchmarks. The key factor is the design of TAIDL, which
enables ISA semantics to be defined in a high-level tensor IR like
XLA-HLO, combinedwith the novel technique for generating tensor
computation graphs to enable fast and scalable simulations.

7.5 Discussion: TAIDL-TO (CPU) vs (GPU)

In Figure 19, we observed a crossover in simulation times between
TAIDL-TO (CPU) and TAIDL-TO (GPU) as DIM increases from 16
to 256. This is due to small tensor shapes (16 × 16) in instruction
semantics at DIM=16, which are not ideal for extracting maximum
performance from the GPU due to limited parallelization oppor-
tunities. This results in the GPU overheads of launching kernels
and transferring data between DRAM and GPU memory being non-
negligible. Likewise, instruction semantics of Intel AMX use small
tensor shapes (16 × 64), resulting in TAIDL-TO (CPU) to perform
better than TAIDL-TO (GPU) for oneDNN kernels (Figure 20).

In general, TAIDL-TO (CPU) is more suited for TAIDL definitions
with smaller tensor shapes (usually co-processor accelerators like
Intel AMX), while TAIDL-TO (GPU) is better for larger tensor
shapes (usually dedicated accelerators like Google TPU).

1327

TAIDL: Tensor Accelerator ISA Definition Language with Auto-generation of Scalable Test Oracles MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

8 TAIDL-TO in Practice

We present two case studies showing practical usage of TAIDL-TO.

8.1 Case Study: Integrating TAIDL-TO into

Existing Compiler Testing Infrastructure

As discussed in Figure 1, typical testing infrastructures for compilers
rely on correctness tests that use physical chips or test oracles. This
is also evident in the Exo compiler [57] that targets the development
of high-performance libraries for specialized hardware accelerators
like Intel AMX and Gemmini. Exo uses Intel SDE for testing the
correctness of its Intel AMX kernels, but lacks a similar level of
correctness testing infrastructure for Gemmini kernels.

512 x 512 x 512

12544 x 256 x 64

12544 x 64 x 256

3136 x 512 x 128

3136 x 128 x 512

784 x 1024 x 256

Gemmini kernels compiled using Exo

0

50

100

150

200

250

Si
m

ul
at

io
n

tim
e

(in
 m

s)

TAIDL-TO (GPU)
TAIDL-TO (CPU)

Figure 21: The simulation time (lower is better) for six Gem-

mini kernels compiled by Exo [57]. X-axis labels are the size

of matrices in 𝑁 ×𝑀 ×𝐾 , where 𝐾 is the reducing dimension.

We bridged this gap by integrating TAIDL-TO auto-generated
for Gemmini ISA (default DIM = 16) into the testing infrastructure
of Exo. This increased the coverage of Exo correctness tests to
include compiled Gemmini kernels. Unlike the Gemmini kernel
library (used in §7.2), Exo-compiled kernels are more complex, with
multiple nested and interleaved loops. Additionally, these kernels
are up to 20x larger than those of §7.2. Figure 21 shows the average
simulation time for these compiled kernels. The simulation times
per kernel were still small (less than 0.25 sec), showing the feasibility
of integrating TAIDL-TOs into compiler testing infrastructures.

Detected Bug.While we observed no correctness bugs in Exo’s de-
fault tests, we detected a numerical precision (overflow) bug result-
ing from missing datatype checks in Exo’s replace() scheduling
directive. We have reported this bug to Exo developers11.

8.2 Case Study: Simulating End-to-End Model

In §7, we evaluated the scalability of TAIDL-TO against existing
instruction-level functional simulators over small-to-medium ker-
nels. Next, we simulate an end-to-end I-BERT [75] transformer
model on TAIDL-TOs generated for Gemmini ISA (DIM = 256). We
select I-BERT since Gemmini, by default, supports only integer op-
erations with additional support for I-BERT’s quantized activations.

We measured the functional simulation time of I-BERT (12 en-
coder layers, 768 embedding size) with sequence length of 512 using
the same machine setup as §7. TAIDL-TO completed the simulation
in just 2.4 sec (GPU disabled) and 0.8 sec (GPU enabled), in con-
trast to over 50 mins required by Gemmini Spike. This shows that
TAIDL-TO enables fast and practical end-to-end model simulation.
11https://github.com/exo-lang/exo/issues/803

9 Related Works

Instruction Specification Languages. Sail [8, 52] provides a language
to describe the instruction semantics of IBM Power, ARMv8, RISC-V,
and MIPS. Compared to TAIDL, which targets tensor accelerators,
Sail supports only scalar instructions. Hydride [77] and VeGen [22]
support vector instruction semantics derived from vendor-provided
pseudocode using bitvector representations. Instruction-Level Ab-
straction (ILA) [56] defines a formal model of hardware execution of
instructions and is designed for verification of hardware behavior.

DSL Specification Languages. ODS [30] and TableGen [29] are used
in MLIR to define the syntactic components like operand types and
constraints of new operations, but not their meaning. For example,
the AIEVecOps.td [58] doesn’t model semantics but only the syntax
of AIE vector instructions along with natural language descriptions.

Performance Models. Prior works on performance modeling, like
Timeloop [99] and MAESTRO [79] model memory hierarchies and
dataflow mappings, but not ISA semantics. These are suited for ar-
chitectural exploration, whereas TAIDL models functional behavior
of instructions, enabling correctness testing of the software stack.

Hardware Simulators. Hardware architects measure performance
metrics using simulator platforms, including discrete-event simula-
tors like gem5 [15] and Structural Simulation Toolkit (SST) [105],
event-driven cycle-level timing simulators like ZSim [108], and RTL
simulators like Synopsys VCS [67] and Verilator [111]. These tools
simulate details of microarchitectural elements, while our work
focuses on instruction-level functional simulation of ISA.

Accelerator Design Languages. Existing accelerator design languages
(ADLs) [19, 76, 78, 81, 96, 97, 117, 120, 121] are used to design mi-
croarchitectures and generate the HLS or RTL code for the accel-
erators. These languages do not define the ISA but design opti-
mized computational units for a particular application/kernel. Un-
like ADLs, TAIDL’s primary use case is to aid hardware architects
in defining an ISA and its semantics for their tensor accelerators.

Accelerator Programming Languages. TensorFlow [2] and JAX [17]
allow users to write high-level programs and target TPUs using the
XLA-TPU compiler, but do not expose interfaces for adding new
instruction definitions. Exo [57] supports the definition of custom
hardware instructions, but lacks memory addressing in these def-
initions and requires special allocation/deallocation instructions,
making it inadequate for defining tensor accelerator ISAs.

10 Conclusion

We present TAIDL, an ISA specification language for tensor accel-
erators that captures the diverse memory hierarchies and compute
capabilities of modern accelerator designs. TAIDL allows acceler-
ator designers to express the intent of the instructions without
delving into hardware implementation details, providing a stan-

dardized, concise, human-readable specification of ISA semantics.
This standardization enables us to automatically generate fast and
scalable test oracle platforms for software development.

TAIDL enables the systems and compilers community to develop
and test software more efficiently, fostering adoption of emerging
tensor accelerators in ML ecosystems and broader collaboration
between hardware and software research communities.

1328

https://github.com/exo-lang/exo/issues/803

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Jain et al.

We have open-sourced the TAIDL library to the community to
facilitate the development of tensor accelerator ISAs. The repository
(https://github.com/act-compiler/taidl) includes detailed language
documentation, example ISA definitions, and tooling to generate
test oracle platforms; we welcome contributions and feedback.

Acknowledgments

We thank the anonymous reviewers for their constructive feedback.
We would also like to thankWanyu Zhao, Kaustubh Khulbe, Saatvik
Lochan and Advait Tahilyani for their valuable suggestions. This
work was supported in part by ACE, one of the seven centers in
JUMP 2.0, which is a Semiconductor Research Corporation (SRC)
program sponsored by DARPA; by NSF under grant CCF-2338739.

A Artifact Appendix

A.1 Abstract

This artifact consists of TAIDL source code and the necessary
scripts to reproduce the evaluation results. To facilitate artifact
evaluation, we have automated the entire environment setup and
experimental processes as part of Docker images. Our evaluation
results were collected using a machine equipped with a 64-core
Intel Xeon Platinum 8358 CPU and an NVIDIA A100 GPU. We
recommend using a machine with an Intel CPU and an NVIDIA
GPU to benchmark TAIDL-TO and its baselines. Reproducing all
simulation statistics takes approximately 30-45 minutes.

A.2 Artifact check-list (meta-information)

• Data set: All relevant datasets are available within this artifact.
• Run-time environment: Docker, NVIDIA Container Toolkit
• Hardware: Intel CPU, NVIDIA GPU
• Metrics: Runtime of simulation, Functional correctness
• Output: Console log (.log), csv files (.csv), and plots (.pdf)
• How much disk space is required?: 20 GB
• How much time is needed to prepare workflow?: 5 mins
• How much time is needed to complete experiments?: 30-45 mins
• Publicly available?: Yes
• Code licenses (if publicly available)?: Apache License 2.0
• Archived (provide DOI)?: 10.5281/zenodo.16734309

A.3 Description

A.3.1 How to access.
Zenodo: https://doi.org/10.5281/zenodo.16734309
GitHub: https://github.com/act-compiler/taidl-artifact-micro25
A.3.2 Hardware dependencies.
Minimum (only TAIDL-TO (CPU)):
Any CPU (8GB+ RAM), No GPU required
Preferred (only TAIDL-TO (CPU) and TAIDL-TO (GPU)):
Any CPU (8GB+ RAM), NVIDIA GPU (4GB+ VRAM)
Recommended (TAIDL-TO (CPU), TAIDL-TO (GPU), Baselines):
Intel CPU (6th gen+, 8GB+RAM), NVIDIAGPU (4GB+VRAM)

Our artifact is built as Docker images that contain benchmarking
environments for TAIDL-TO and the baselines. TAIDL-TOs can be
benchmarked on personal laptops with TAIDL-TO (GPU) requiring
an NVIDIA GPU. The baselines (Gemmini Spike and Intel SDE)
only support amd64/x86_64 CPU processor architecture. Therefore,
Intel CPU + NVIDIA GPU is recommended for full evaluation.

A.3.3 Software dependencies.
(i) Docker Engine and (ii) NVIDIA Container Toolkit

A.4 Installation

(1) Download the artifact from Zenodo or by clicking here.
(2) Extract the files and follow the instructions in the README.md.

A.5 Experiment workflow

The experimental workflow has been encapsulated within bash
scripts. These scripts set up appropriate Docker containers, run the
simulation experiments, and generate the final plots.

To kick-the-tires, run ./scripts/kick-tires.sh from the base
directory. This will generate plots from pre-saved data without
running any experiments.

To perform a subset of the evaluation, run ./scripts/lite.sh
from the base directory. This will generate plots by benchmarking
TAIDL-TOs for Gemmini and oneDNN kernels. This will also per-
form correctness testing of TAIDL-TO using pre-generated inputs
and golden outputs. This takes only 4-5 minutes.

To perform the complete evaluation, run ./scripts/full.sh
from the base directory. This will generate plots by benchmarking
TAIDL-TOs and the baselines – Gemmini Spike and Intel SDE. This
will also generate inputs and golden outputs using Gemmini Spike
and Intel SDE for correctness testing of TAIDL-TO. This may take
around 30-45 minutes and will not run on ARM machines.

For more details, refer to the README.md in the artifact.

A.6 Evaluation and expected results

The key results of the paper include benchmarking simulation times
of TAIDL-TOs and baselines (Gemmini Spike and Intel SDE), i.e.,
statistics reported in Figure 19, Figure 20, Figure 21, and §8.2.

Note that most of the simulation times are in milliseconds, so
machine characteristics (processor performance) and runtime char-
acteristics (background activity) may result in numerical variations
of final results. Nevertheless, the following trends will be consistent:

(1) Figure 19: Gemmini Spike is expected to be significantly
slower than TAIDL-TO with and without GPU acceleration.

(2) Figure 20: Intel SDE is expected to be slower than TAIDL-TO
with and without GPU acceleration, with a minor exception
for AVX-only kernels on GPU acceleration.

(3) Figure 21: TAIDL-TO is expected to simulate Exo-generated
Gemmini kernels within a second per kernel.

(4) §8.2: TAIDL-TO is expected to be orders of magnitude faster
than Gemmini Spike (milliseconds/seconds vs minutes)

A.7 Experiment customization

To try the artifact interactively, launch our provided Docker envi-
ronment using ./scripts/launch.sh and follow the step-by-step
guide in README.md to define a custom ISA in TAIDL and write
custom kernels to simulate using the generated TAIDL-TO library.

A.8 Methodology

Submission, reviewing, and badging methodology:
• https://www.acm.org/publications/policies/artifact-review-
and-badging-current
• https://cTuning.org/ae

1329

https://github.com/act-compiler/taidl
https://doi.org/10.5281/zenodo.16734309
https://doi.org/10.5281/zenodo.16734309
https://github.com/act-compiler/taidl-artifact-micro25
https://docs.docker.com/engine/install/
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
https://doi.org/10.5281/zenodo.16734309
https://zenodo.org/api/records/16971223/files-archive
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://cTuning.org/ae

TAIDL: Tensor Accelerator ISA Definition Language with Auto-generation of Scalable Test Oracles MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

References

[1] 2019. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019 (Revision of
IEEE 754-2008) (July 2019), 1–84. https://doi.org/10.1109/IEEESTD.2019.8766229

[2] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: a system for large-scale machine
learning. In Proceedings of the 12th USENIX Conference on Operating Systems De-

sign and Implementation (Savannah, GA, USA) (OSDI’16). USENIX Association,
USA, 265–283.

[3] Andreas Abel and Jan Reineke. 2022. uiCA: accurate throughput prediction of
basic blocks on recent intel microarchitectures. In Proceedings of the 36th ACM

International Conference on Supercomputing (Virtual Event) (ICS ’22). Association
for Computing Machinery, New York, NY, USA, Article 33, 14 pages. https:
//doi.org/10.1145/3524059.3532396

[4] Ayaz Akram and Lina Sawalha. 2019. A Survey of Computer Architecture
Simulation Techniques and Tools. IEEE Access 7 (2019), 78120–78145. https:
//doi.org/10.1109/ACCESS.2019.2917698

[5] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar
Karandikar, Harrison Liew, Albert Magyar, Howard Mao, Albert Ou, Nathan
Pemberton, Paul Rigge, Colin Schmidt, John Wright, Jerry Zhao, Yakun Sophia
Shao, Krste Asanović, and Borivoje Nikolić. 2020. Chipyard: Integrated Design,
Simulation, and Implementation Framework for Custom SoCs. IEEE Micro 40, 4
(July 2020), 10–21. https://doi.org/10.1109/MM.2020.2996616

[6] Paul Ammann and Jeff Offutt. 2008. Introduction to Software Testing (1 ed.).
Cambridge University Press, USA.

[7] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain,
Michael Voznesensky, Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta
Chauhan, Anjali Chourdia, Will Constable, Alban Desmaison, Zachary DeVito,
Elias Ellison, Will Feng, Jiong Gong, Michael Gschwind, Brian Hirsh, Sherlock
Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos, Mario Lezcano,
Yanbo Liang, Jason Liang, Yinghai Lu, C. K. Luk, Bert Maher, Yunjie Pan, Chris-
tian Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk,
Shunting Zhang, Michael Suo, Phil Tillet, Xu Zhao, Eikan Wang, Keren Zhou,
Richard Zou, Xiaodong Wang, Ajit Mathews, William Wen, Gregory Chanan,
Peng Wu, and Soumith Chintala. 2024. PyTorch 2: Faster Machine Learning
Through Dynamic Python Bytecode Transformation and Graph Compilation.
In Proceedings of the 29th ACM International Conference on Architectural Support

for Programming Languages and Operating Systems, Volume 2 (La Jolla, CA,
USA) (ASPLOS ’24). Association for Computing Machinery, New York, NY, USA,
929–947. https://doi.org/10.1145/3620665.3640366

[8] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid,
Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell, Jon
French, Christopher Pulte, Shaked Flur, Ian Stark, Neel Krishnaswami, and
Peter Sewell. 2019. ISA semantics for ARMv8-a, RISC-v, and CHERI-MIPS.
Proc. ACM Program. Lang. 3, POPL, Article 71 (jan 2019), 31 pages. https:
//doi.org/10.1145/3290384

[9] Jai Arora, Sirui Lu, Devansh Jain, Tianfan Xu, Farzin Houshmand,
Phitchaya Mangpo Phothilimthana, Mohsen Lesani, Praveen Narayanan,
Karthik Srinivasa Murthy, Rastislav Bodik, Amit Sabne, and Charith Mendis.
2025. TensorRight: Automated Verification of Tensor Graph Rewrites. Proc.
ACM Program. Lang. 9, POPL, Article 29 (Jan. 2025), 32 pages. https://doi.org/
10.1145/3704865

[10] Moshe Bach, Mark Charney, Robert Cohn, Elena Demikhovsky, Tevi Devor, Kim
Hazelwood, Aamer Jaleel, Chi-Keung Luk, Gail Lyons, Harish Patil, and Ady
Tal. 2010. Analyzing Parallel Programs with PIN. Computer 43, 3 (2010), 34–41.
https://doi.org/10.1109/MC.2010.60

[11] Ali Bakhoda, George L. Yuan, Wilson W. L. Fung, Henry Wong, and Tor M.
Aamodt. 2009. Analyzing CUDA workloads using a detailed GPU simulator.
In 2009 IEEE International Symposium on Performance Analysis of Systems and

Software. 163–174. https://doi.org/10.1109/ISPASS.2009.4919648
[12] Sorav Bansal and Alex Aiken. 2006. Automatic generation of peephole super-

optimizers. In Proceedings of the 12th International Conference on Architectural

Support for Programming Languages and Operating Systems (San Jose, California,
USA) (ASPLOS XII). Association for Computing Machinery, New York, NY, USA,
394–403. https://doi.org/10.1145/1168857.1168906

[13] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo.
2015. The Oracle Problem in Software Testing: A Survey. IEEE Transactions on

Software Engineering 41, 5 (2015), 507–525. https://doi.org/10.1109/TSE.2014.
2372785

[14] Thomas Bauereiss, Brian Campbell, Thomas Sewell, Alasdair Armstrong,
Lawrence Esswood, Ian Stark, Graeme Barnes, Robert N. M. Watson, and Peter
Sewell. 2022. Verified Security for the Morello Capability-enhanced Prototype
Arm Architecture. In Programming Languages and Systems, Ilya Sergey (Ed.).
Springer International Publishing, Cham, 174–203.

[15] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH computer architecture

news 39, 2 (2011), 1–7.
[16] Gabriel S. Hjort Blindell. 2013. Survey on Instruction Selection: An Extensive

and Modern Literature Review. arXiv:1306.4898 [cs.PL] https://arxiv.org/abs/
1306.4898

[17] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris
Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. 2018. JAX: composable transformations of

Python+NumPy programs. http://github.com/google/jax
[18] Sebastian Buchwald, Andreas Fried, and Sebastian Hack. 2018. Synthesizing an

instruction selection rule library from semantic specifications. In Proceedings of

the 2018 International Symposium on Code Generation and Optimization (Vienna,
Austria) (CGO ’18). Association for Computing Machinery, New York, NY, USA,
300–313. https://doi.org/10.1145/3168821

[19] Hongzheng Chen, Niansong Zhang, Shaojie Xiang, Zhichen Zeng, Mengjia
Dai, and Zhiru Zhang. 2024. Allo: A Programming Model for Composable
Accelerator Design. Proc. ACM Program. Lang. 8, PLDI, Article 171 (jun 2024),
28 pages. https://doi.org/10.1145/3656401

[20] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. 2014. DianNao: A Small-Footprint High-Throughput Accel-
erator for Ubiquitous Machine-Learning. In Proceedings of the 19th International

Conference on Architectural Support for Programming Languages and Operating

Systems (Salt Lake City, Utah, USA) (ASPLOS ’14). Association for ComputingMa-
chinery, New York, NY, USA, 269–284. https://doi.org/10.1145/2541940.2541967

[21] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, LeyuanWang, Yuwei Hu, Luis Ceze, et al. 2018. TVM: An
automated End-to-End optimizing compiler for deep learning. In 13th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 18). 578–594.
[22] Yishen Chen, Charith Mendis, Michael Carbin, and Saman Amarasinghe. 2021.

VeGen: a vectorizer generator for SIMD and beyond. In Proceedings of the 26th

ACM International Conference on Architectural Support for Programming Lan-

guages and Operating Systems (Virtual, USA) (ASPLOS ’21). Association for
Computing Machinery, New York, NY, USA, 902–914. https://doi.org/10.1145/
3445814.3446692

[23] Yu-Hsin Chen, Tushar Krishna, Joel S. Emer, and Vivienne Sze. 2017. Eyeriss:
An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks. IEEE Journal of Solid-State Circuits 52, 1 (Jan 2017), 127–138. https:
//doi.org/10.1109/JSSC.2016.2616357

[24] Joel Coburn, Chunqiang Tang, Sameer Abu Asal, Neeraj Agrawal, Raviteja
Chinta, Harish Dixit, Brian Dodds, Saritha Dwarakapuram, Amin Firoozshahian,
Cao Gao, Kaustubh Gondkar, Tyler Graf, Junhan Hu, Jian Huang, Sterling
Hughes, Adam Hutchin, Bhasker Jakka, Guoqiang Jerry Chen, Indu Kalya-
naraman, Ashwin Kamath, Pankaj Kansal, Erum Kazi, Roman Levenstein, Ma-
hesh Maddury, Alex Mastro, Siji Medaiyese, Pritesh Modi, Jack Montgomery,
Satish Nadathur, Amit Nagpal, Ashwin Narasimha, Maxim Naumov, Eleanor
Ozer, Jongsoo Park, Poorvaja Ramani, Harikrishna Reddy, David Reiss, De-
boleena Roy, Sathish Sekar, Arushi Sharma, Pavan Shetty, Aravind Sukumaran-
Rajam, Eran Tal, Mike Tsai, Shreya Varshini, Richard Wareing, Olivia Wu, Xiao-
long Xie, Jinghan Yang, Hangchen Yu, Tanmay Zargar, Zitong Zeng, Feixiong
Zhang, Ajit Matthews, Xun Jiao, Jiyuan Zhang, Emmanuel Menage, Truls Ed-
vard Stokke, and Mohammed Sourouri. 2025. Meta’s Second Generation AI
Chip: Model-Chip Co-Design and Productionization Experiences. In Proceedings

of the 52nd Annual International Symposium on Computer Architecture (ISCA

’25). Association for Computing Machinery, New York, NY, USA, 1689–1702.
https://doi.org/10.1145/3695053.3731409

[25] AWS Neuron SDK Contributors. 2024. Different values when using
nki.simulate_kernel. https://github.com/aws-neuron/aws-neuron-sdk/issues/
1051.

[26] JAX Contributors. 2024. jax.experimental.pallas.pallas_call. https://docs.jax.
dev/en/latest/_autosummary/jax.experimental.pallas.pallas_call.html.

[27] JAX Contributors. 2024. Pallas TPU. https://docs.jax.dev/en/latest/pallas/tpu/
index.html.

[28] JAX Contributors. 2024. [Pallas TPU] Wrong value when using ‘in-
put_output_aliases‘ with multiple arrays. https://github.com/jax-ml/jax/issues/
24023.

[29] LLVM Contributors. 2025. TableGen. https://llvm.org/docs/TableGen/.
[30] MLIR Contributors. 2025. Operation Definition Specification (ODS). https:

//mlir.llvm.org/docs/DefiningDialects/Operations/.
[31] OpenXLA Contributors. 2024. XLA Compiler. https://openxla.org/xla.
[32] OpenXLA Contributors. 2025. OpenXLA Project. https://openxla.org/.
[33] OpenXLA Contributors. 2025. Operation semantics | OpenXLA Project. https:

//openxla.org/xla/operation_semantics.
[34] OpenXLA Contributors. 2025. StableHLO Specification. https://github.com/

openxla/stablehlo/blob/main/docs/spec.md/.
[35] OpenXLA Contributors. 2025. XLA Algebraic Simplifier. https://github.com/

openxla/xla/blob/main/xla/hlo/transforms/simplifiers/algebraic_simplifier.cc.

1330

https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1145/3524059.3532396
https://doi.org/10.1145/3524059.3532396
https://doi.org/10.1109/ACCESS.2019.2917698
https://doi.org/10.1109/ACCESS.2019.2917698
https://doi.org/10.1109/MM.2020.2996616
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3290384
https://doi.org/10.1145/3290384
https://doi.org/10.1145/3704865
https://doi.org/10.1145/3704865
https://doi.org/10.1109/MC.2010.60
https://doi.org/10.1109/ISPASS.2009.4919648
https://doi.org/10.1145/1168857.1168906
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/TSE.2014.2372785
https://arxiv.org/abs/1306.4898
https://arxiv.org/abs/1306.4898
https://arxiv.org/abs/1306.4898
http://github.com/google/jax
https://doi.org/10.1145/3168821
https://doi.org/10.1145/3656401
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1145/3445814.3446692
https://doi.org/10.1145/3445814.3446692
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1145/3695053.3731409
https://github.com/aws-neuron/aws-neuron-sdk/issues/1051
https://github.com/aws-neuron/aws-neuron-sdk/issues/1051
https://docs.jax.dev/en/latest/_autosummary/jax.experimental.pallas.pallas_call.html
https://docs.jax.dev/en/latest/_autosummary/jax.experimental.pallas.pallas_call.html
https://docs.jax.dev/en/latest/pallas/tpu/index.html
https://docs.jax.dev/en/latest/pallas/tpu/index.html
https://github.com/jax-ml/jax/issues/24023
https://github.com/jax-ml/jax/issues/24023
https://llvm.org/docs/TableGen/
https://mlir.llvm.org/docs/DefiningDialects/Operations/
https://mlir.llvm.org/docs/DefiningDialects/Operations/
https://openxla.org/xla
https://openxla.org/
https://openxla.org/xla/operation_semantics
https://openxla.org/xla/operation_semantics
https://github.com/openxla/stablehlo/blob/main/docs/spec.md/
https://github.com/openxla/stablehlo/blob/main/docs/spec.md/
https://github.com/openxla/xla/blob/main/xla/hlo/transforms/simplifiers/algebraic_simplifier.cc
https://github.com/openxla/xla/blob/main/xla/hlo/transforms/simplifiers/algebraic_simplifier.cc

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Jain et al.

[36] AI Core and Alok Kumar Gupta. 2020. Architecture Apocalypse Dream
Architecture for Deep Learning Inference and Compute -VERSAL AI Core.
https://api.semanticscholar.org/CorpusID:227170027

[37] Intel Corporation. 2023. Intel® Intrinsics Guide. https://www.intel.com/content/
www/us/en/docs/intrinsics-guide/index.html.

[38] Intel Corporation. 2024. What Is Intel® Advanced Matrix Extensions (Intel®
AMX)? https://www.intel.com/content/www/us/en/products/docs/accelerator-
engines/what-is-intel-amx.html.

[39] Intel Corporation. 2025. Intel® Software Development Emulator (Intel®
SDE). https://www.intel.com/content/www/us/en/developer/articles/tool/
software-development-emulator.html.

[40] NVIDIA Corporation. 2025. CUDA Deep Neural Network (cuDNN). https:
//developer.nvidia.com/cudnn.

[41] NVIDIA Corporation. 2025. PTX ISA 8.7. https://docs.nvidia.com/cuda/pdf/ptx_
isa_8.7.pdf.

[42] NVIDIA Corporation. 2025. TensorRT SDK. https://developer.nvidia.com/
tensorrt.

[43] Chris Cummins, Pavlos Petoumenos, Alastair Murray, and Hugh Leather. 2018.
Compiler fuzzing through deep learning. In Proceedings of the 27th ACM SIG-

SOFT International Symposium on Software Testing and Analysis (Amsterdam,
Netherlands) (ISSTA 2018). Association for Computing Machinery, New York,
NY, USA, 95–105. https://doi.org/10.1145/3213846.3213848

[44] Scott Cyphers, Arjun K. Bansal, Anahita Bhiwandiwalla, Jayaram Bobba,
Matthew Brookhart, Avijit Chakraborty, Will Constable, Christian Convey,
Leona Cook, Omar Kanawi, Robert Kimball, Jason Knight, Nikolay Korovaiko,
Varun Kumar, Yixing Lao, Christopher R. Lishka, Jaikrishnan Menon, Jennifer
Myers, Sandeep Aswath Narayana, Adam Procter, and Tristan J. Webb. 2018.
Intel nGraph: An Intermediate Representation, Compiler, and Executor for Deep
Learning. arXiv:1801.08058 [cs.DC] https://arxiv.org/abs/1801.08058

[45] L. Dagum and R. Menon. 1998. OpenMP: an industry standard API for shared-
memory programming. IEEE Computational Science and Engineering 5, 1 (1998),
46–55. https://doi.org/10.1109/99.660313

[46] Sandeep Dasgupta, Daejun Park, Theodoros Kasampalis, Vikram S. Adve, and
Grigore Roşu. 2019. A complete formal semantics of x86-64 user-level instruc-
tion set architecture. In Proceedings of the 40th ACM SIGPLAN Conference on

Programming Language Design and Implementation (Phoenix, AZ, USA) (PLDI
2019). Association for Computing Machinery, New York, NY, USA, 1133–1148.
https://doi.org/10.1145/3314221.3314601

[47] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo,
Xiaobing Feng, Yunji Chen, and Olivier Temam. 2015. ShiDianNao: Shift-
ing vision processing closer to the sensor. In 2015 ACM/IEEE 42nd Annual

International Symposium on Computer Architecture (ISCA). 92–104. https:
//doi.org/10.1145/2749469.2750389

[48] Amr S. Elhelw and Sreepathi Pai. 2020. Horus: A Modular GPU Emulator
Framework. In 2020 IEEE International Symposium on Performance Analysis of

Systems and Software (ISPASS). 104–106. https://doi.org/10.1109/ISPASS48437.
2020.00020

[49] Amin Firoozshahian, Joel Coburn, Roman Levenstein, Rakesh Nattoji, Ashwin
Kamath, Olivia Wu, Gurdeepak Grewal, Harish Aepala, Bhasker Jakka, Bob
Dreyer, Adam Hutchin, Utku Diril, Krishnakumar Nair, Ehsan K. Aredestani,
Martin Schatz, YuchenHao, Rakesh Komuravelli, KunmingHo, Sameer AbuAsal,
Joe Shajrawi, Kevin Quinn, Nagesh Sreedhara, Pankaj Kansal, Willie Wei,
Dheepak Jayaraman, Linda Cheng, PritamChopda, EricWang, Ajay Bikumandla,
Arun Karthik Sengottuvel, Krishna Thottempudi, Ashwin Narasimha, Brian
Dodds, Cao Gao, Jiyuan Zhang, Mohammed Al-Sanabani, Ana Zehtabioskuie,
Jordan Fix, Hangchen Yu, Richard Li, Kaustubh Gondkar, Jack Montgomery,
Mike Tsai, Saritha Dwarakapuram, Sanjay Desai, Nili Avidan, Poorvaja Ramani,
Karthik Narayanan, Ajit Mathews, Sethu Gopal, Maxim Naumov, Vijay Rao, Kr-
ishna Noru, Harikrishna Reddy, Prahlad Venkatapuram, and Alexis Bjorlin. 2023.
MTIA: First Generation Silicon Targeting Meta’s Recommendation Systems. In
Proceedings of the 50th Annual International Symposium on Computer Architec-

ture (Orlando, FL, USA) (ISCA ’23). Association for Computing Machinery, New
York, NY, USA, Article 80, 13 pages. https://doi.org/10.1145/3579371.3589348

[50] Unified Acceleration (UXL) Foundation. 2025. oneAPI Deep Neural Network
Library (oneDNN). https://github.com/uxlfoundation/oneDNN.

[51] Hasan Genc, Seah Kim, Alon Amid, Ameer Haj-Ali, Vighnesh Iyer, Pranav
Prakash, Jerry Zhao, Daniel Grubb, Harrison Liew, Howard Mao, Albert Ou,
Colin Schmidt, Samuel Steffl, John Wright, Ion Stoica, Jonathan Ragan-Kelley,
Krste Asanovic, Borivoje Nikolic, and Yakun Sophia Shao. 2022. Gemmini:

Enabling Systematic Deep-Learning Architecture Evaluation via Full-Stack Inte-

gration. IEEE Press, 769–774. https://doi.org/10.1109/DAC18074.2021.9586216
[52] Kathryn E. Gray, Gabriel Kerneis, Dominic Mulligan, Christopher Pulte, Susmit

Sarkar, and Peter Sewell. 2015. An integrated concurrency and core-ISA archi-
tectural envelope definition, and test oracle, for IBM POWER multiprocessors.
In Proceedings of the 48th International Symposium on Microarchitecture (Waikiki,
Hawaii) (MICRO-48). Association for Computing Machinery, New York, NY,
USA, 635–646. https://doi.org/10.1145/2830772.2830775

[53] Greg Henry, Ping Tak Peter Tang, and Alexander Heinecke. 2019. Leveraging
the bfloat16 Artificial Intelligence Datatype For Higher-Precision Computations.
arXiv:1904.06376 [cs.MS] https://arxiv.org/abs/1904.06376

[54] Stefan Heule, Eric Schkufza, Rahul Sharma, and Alex Aiken. 2016. Stratified
synthesis: automatically learning the x86-64 instruction set. In Proceedings

of the 37th ACM SIGPLAN Conference on Programming Language Design and

Implementation (Santa Barbara, CA, USA) (PLDI ’16). Association for Computing
Machinery, New York, NY, USA, 237–250. https://doi.org/10.1145/2908080.
2908121

[55] Douglas R. Hofstadter. 1979. Gödel, Escher, Bach: An Eternal Golden Braid. Basic
Books, New York.

[56] Bo-Yuan Huang, Hongce Zhang, Pramod Subramanyan, Yakir Vizel, Aarti Gupta,
and Sharad Malik. 2018. Instruction-Level Abstraction (ILA): A Uniform Specifi-
cation for System-on-Chip (SoC) Verification. ACM Trans. Des. Autom. Electron.

Syst. 24, 1, Article 10 (dec 2018), 24 pages. https://doi.org/10.1145/3282444
[57] Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genc, and Jonathan

Ragan-Kelley. 2022. Exocompilation for productive programming of hardware
accelerators. In Proceedings of the 43rd ACM SIGPLAN International Conference on

Programming Language Design and Implementation (San Diego, CA, USA) (PLDI
2022). Association for Computing Machinery, New York, NY, USA, 703–718.
https://doi.org/10.1145/3519939.3523446

[58] AdvancedMicro Devices Inc. 2024. AIE vector op definitions. https://github.com/
Xilinx/mlir-aie/blob/main/include/aie/Dialect/AIEVec/IR/AIEVecOps.td#L46.

[59] Advanced Micro Devices Inc. 2024. MLIR-based AIEngine toolchain. https:
//xilinx.github.io/mlir-aie/.

[60] Advanced Micro Devices Inc. 2025. AMD Technical Information Portal • AI
Engine Tools and Flows User Guide (UG1076) • AI Engine Simulator. https://
docs.amd.com/r/en-US/ug1076-ai-engine-environment/AI-Engine-Simulator.

[61] Advanced Micro Devices Inc. 2025. AMD Technical Information Portal
• AI Engine Tools and Flows User Guide (UG1076) • x86 Functional Sim-
ulator. https://docs.amd.com/r/en-US/ug1076-ai-engine-environment/x86-
Functional-Simulator.

[62] Amazon Web Services Inc. 2025. AWS Inferentia. https://aws.amazon.com/
machine-learning/inferentia/.

[63] Amazon Web Services Inc. 2025. AWS Neuron SDK Documentation. https:
//awsdocs-neuron.readthedocs-hosted.com/en/latest/.

[64] Amazon Web Services Inc. 2025. AWS Trainium. https://aws.amazon.com/
machine-learning/trainium/.

[65] Amazon Web Services Inc. 2025. Neuron Kernel Interface (NKI) - Beta. https:
//awsdocs-neuron.readthedocs-hosted.com/en/latest/general/nki/index.html.

[66] Amazon Web Services Inc. 2025. nki.simulate_kernel. https://awsdocs-
neuron.readthedocs-hosted.com/en/latest/general/nki/api/generated/nki.
simulate_kernel.html.

[67] Synopsys Inc. 2025. Synopsys VCS. https://www.synopsys.com/verification/
simulation/vcs.html.

[68] Bo Jiang, XiaoyanWang, W. K. Chan, T. H. Tse, Na Li, Yongfeng Yin, and Zhenyu
Zhang. 2020. CUDAsmith: A Fuzzer for CUDA Compilers. In 2020 IEEE 44th

Annual Computers, Software, and Applications Conference (COMPSAC). 861–871.
https://doi.org/10.1109/COMPSAC48688.2020.0-156

[69] Norm Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan, Lifeng Nai,
Nishant Patil, Suvinay Subramanian, Andy Swing, Brian Towles, Clifford Young,
Xiang Zhou, Zongwei Zhou, and David A Patterson. 2023. TPU v4: An Optically
Reconfigurable Supercomputer for Machine Learning with Hardware Support
for Embeddings. In Proceedings of the 50th Annual International Symposium on

Computer Architecture (Orlando, FL, USA) (ISCA ’23). Association for Computing
Machinery, New York, NY, USA, Article 82, 14 pages. https://doi.org/10.1145/
3579371.3589350

[70] Norman P. Jouppi, Doe Hyun Yoon, George Kurian, Sheng Li, Nishant Patil,
James Laudon, Cliff Young, and David Patterson. 2020. A domain-specific
supercomputer for training deep neural networks. Commun. ACM 63, 7 (June
2020), 67–78. https://doi.org/10.1145/3360307

[71] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick
Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Da-
ley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra
Gottipati, William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg,
John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski,
Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Ku-
mar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan
Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Ma-
hony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix,
Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan
Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov,
Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gre-
gory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard
Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter
Performance Analysis of a Tensor Processing Unit. In Proceedings of the 44th An-

nual International Symposium on Computer Architecture (Toronto, ON, Canada)

1331

https://api.semanticscholar.org/CorpusID:227170027
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/what-is-intel-amx.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/what-is-intel-amx.html
https://www.intel.com/content/www/us/en/developer/articles/tool/software-development-emulator.html
https://www.intel.com/content/www/us/en/developer/articles/tool/software-development-emulator.html
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://docs.nvidia.com/cuda/pdf/ptx_isa_8.7.pdf
https://docs.nvidia.com/cuda/pdf/ptx_isa_8.7.pdf
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://doi.org/10.1145/3213846.3213848
https://arxiv.org/abs/1801.08058
https://arxiv.org/abs/1801.08058
https://doi.org/10.1109/99.660313
https://doi.org/10.1145/3314221.3314601
https://doi.org/10.1145/2749469.2750389
https://doi.org/10.1145/2749469.2750389
https://doi.org/10.1109/ISPASS48437.2020.00020
https://doi.org/10.1109/ISPASS48437.2020.00020
https://doi.org/10.1145/3579371.3589348
https://github.com/uxlfoundation/oneDNN
https://doi.org/10.1109/DAC18074.2021.9586216
https://doi.org/10.1145/2830772.2830775
https://arxiv.org/abs/1904.06376
https://arxiv.org/abs/1904.06376
https://doi.org/10.1145/2908080.2908121
https://doi.org/10.1145/2908080.2908121
https://doi.org/10.1145/3282444
https://doi.org/10.1145/3519939.3523446
https://github.com/Xilinx/mlir-aie/blob/main/include/aie/Dialect/AIEVec/IR/AIEVecOps.td#L46
https://github.com/Xilinx/mlir-aie/blob/main/include/aie/Dialect/AIEVec/IR/AIEVecOps.td#L46
https://xilinx.github.io/mlir-aie/
https://xilinx.github.io/mlir-aie/
https://docs.amd.com/r/en-US/ug1076-ai-engine-environment/AI-Engine-Simulator
https://docs.amd.com/r/en-US/ug1076-ai-engine-environment/AI-Engine-Simulator
https://docs.amd.com/r/en-US/ug1076-ai-engine-environment/x86-Functional-Simulator
https://docs.amd.com/r/en-US/ug1076-ai-engine-environment/x86-Functional-Simulator
https://aws.amazon.com/machine-learning/inferentia/
https://aws.amazon.com/machine-learning/inferentia/
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/
https://aws.amazon.com/machine-learning/trainium/
https://aws.amazon.com/machine-learning/trainium/
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/nki/index.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/nki/index.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/nki/api/generated/nki.simulate_kernel.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/nki/api/generated/nki.simulate_kernel.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/nki/api/generated/nki.simulate_kernel.html
https://www.synopsys.com/verification/simulation/vcs.html
https://www.synopsys.com/verification/simulation/vcs.html
https://doi.org/10.1109/COMPSAC48688.2020.0-156
https://doi.org/10.1145/3579371.3589350
https://doi.org/10.1145/3579371.3589350
https://doi.org/10.1145/3360307

TAIDL: Tensor Accelerator ISA Definition Language with Auto-generation of Scalable Test Oracles MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

(ISCA ’17). Association for Computing Machinery, New York, NY, USA, 1–12.
https://doi.org/10.1145/3079856.3080246

[72] Sam Kaufman, Phitchaya Phothilimthana, Yanqi Zhou, Charith Mendis,
Sudip Roy, Amit Sabne, and Mike Burrows. 2021. A Learned Per-
formance Model for Tensor Processing Units. In Proceedings of Ma-

chine Learning and Systems, A. Smola, A. Dimakis, and I. Stoica (Eds.),
Vol. 3. 387–400. https://proceedings.mlsys.org/paper_files/paper/2021/file/
6bcfac823d40046dca25ef6d6d59cc3f-Paper.pdf

[73] Mahmoud Khairy, Zhesheng Shen, Tor M. Aamodt, and Timothy G. Rogers.
2020. Accel-Sim: An Extensible Simulation Framework for Validated GPU
Modeling. In 2020 ACM/IEEE 47th Annual International Symposium on Computer

Architecture (ISCA). 473–486. https://doi.org/10.1109/ISCA45697.2020.00047
[74] Sung Kim, Morteza Fayazi, Alhad Daftardar, Kuan-Yu Chen, Jielun Tan, Sub-

hankar Pal, Tutu Ajayi, Yan Xiong, Trevor Mudge, Chaitali Chakrabarti, David
Blaauw, Ronald Dreslinski, and Hun-Seok Kim. 2021. Versa: A Dataflow-Centric
Multiprocessor with 36 Systolic ARM Cortex-M4F Cores and a Reconfigurable
Crossbar-Memory Hierarchy in 28nm. In 2021 Symposium on VLSI Circuits. 1–2.
https://doi.org/10.23919/VLSICircuits52068.2021.9492391

[75] Sehoon Kim, Amir Gholami, Zhewei Yao, MichaelW.Mahoney, and Kurt Keutzer.
2021. I-BERT: Integer-only BERT Quantization. In Proceedings of the 38th

International Conference on Machine Learning (Proceedings of Machine Learning

Research, Vol. 139), Marina Meila and Tong Zhang (Eds.). PMLR, 5506–5518.
https://proceedings.mlr.press/v139/kim21d.html

[76] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, Stefan Had-
jis, Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos Kozyrakis,
and Kunle Olukotun. 2018. Spatial: a language and compiler for application
accelerators. SIGPLAN Not. 53, 4 (jun 2018), 296–311. https://doi.org/10.1145/
3296979.3192379

[77] Akash Kothari, Abdul Rafae Noor, Muchen Xu, Hassam Uddin, Dhruv Baronia,
Stefanos Baziotis, Vikram Adve, Charith Mendis, and Sudipta Sengupta. 2024.
Hydride: A Retargetable and Extensible Synthesis-based Compiler for Modern
Hardware Architectures. In Proceedings of the 29th ACM International Conference

on Architectural Support for Programming Languages and Operating Systems, Vol-

ume 2 (La Jolla, CA, USA) (ASPLOS ’24). Association for Computing Machinery,
New York, NY, USA, 514–529. https://doi.org/10.1145/3620665.3640385

[78] Kalhan Koul, Jackson Melchert, Kavya Sreedhar, Leonard Truong, Gedeon Nyen-
gele, Keyi Zhang, Qiaoyi Liu, Jeff Setter, Po-Han Chen, Yuchen Mei, Maxwell
Strange, Ross Daly, Caleb Donovick, Alex Carsello, Taeyoung Kong, Kathleen
Feng, Dillon Huff, Ankita Nayak, Rajsekhar Setaluri, James Thomas, Nikhil
Bhagdikar, David Durst, Zachary Myers, Nestan Tsiskaridze, Stephen Richard-
son, Rick Bahr, Kayvon Fatahalian, Pat Hanrahan, Clark Barrett, Mark Horowitz,
Christopher Torng, Fredrik Kjolstad, and Priyanka Raina. 2023. AHA: An Agile
Approach to the Design of Coarse-Grained Reconfigurable Accelerators and
Compilers. ACM Trans. Embed. Comput. Syst. 22, 2, Article 35 (jan 2023), 34 pages.
https://doi.org/10.1145/3534933

[79] Hyoukjun Kwon, Prasanth Chatarasi, Vivek Sarkar, Tushar Krishna, Michael
Pellauer, and Angshuman Parashar. 2020. MAESTRO: A Data-Centric Approach
to Understand Reuse, Performance, and Hardware Cost of DNN Mappings. IEEE
Micro 40, 3 (May 2020), 20–29. https://doi.org/10.1109/MM.2020.2985963

[80] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. 2018. MAERI: Enabling
Flexible Dataflow Mapping over DNN Accelerators via Reconfigurable Intercon-
nects. In Proceedings of the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems (Williamsburg, VA,
USA) (ASPLOS ’18). Association for Computing Machinery, New York, NY, USA,
461–475. https://doi.org/10.1145/3173162.3173176

[81] Yi-Hsiang Lai, Yuze Chi, Yuwei Hu, Jie Wang, Cody Hao Yu, Yuan Zhou, Jason
Cong, and Zhiru Zhang. 2019. HeteroCL: A Multi-Paradigm Programming
Infrastructure for Software-Defined Reconfigurable Computing. In Proceedings

of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays (Seaside, CA, USA) (FPGA ’19). Association for Computing Machinery,
New York, NY, USA, 242–251. https://doi.org/10.1145/3289602.3293910

[82] Samuel Larsen and Saman Amarasinghe. 2000. Exploiting superword level paral-
lelism with multimedia instruction sets. In Proceedings of the ACM SIGPLAN 2000

Conference on Programming Language Design and Implementation (Vancouver,
British Columbia, Canada) (PLDI ’00). Association for Computing Machinery,
New York, NY, USA, 145–156. https://doi.org/10.1145/349299.349320

[83] C. Lattner and V. Adve. 2004. LLVM: a compilation framework for lifelong pro-
gram analysis & transformation. In International Symposium on Code Generation

and Optimization, 2004. CGO 2004. 75–86. https://doi.org/10.1109/CGO.2004.
1281665

[84] Hao Liu, Matei Zaharia, and Pieter Abbeel. 2023. Ring Attention with Blockwise
Transformers for Near-Infinite Context. arXiv:2310.01889 [cs.CL] https://arxiv.
org/abs/2310.01889

[85] Jiawei Liu, Jinkun Lin, Fabian Ruffy, Cheng Tan, Jinyang Li, Aurojit Panda, and
Lingming Zhang. 2023. NNSmith: Generating Diverse and Valid Test Cases
for Deep Learning Compilers. In Proceedings of the 28th ACM International

Conference on Architectural Support for Programming Languages and Operating

Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS 2023). Association for

Computing Machinery, New York, NY, USA, 530–543. https://doi.org/10.1145/
3575693.3575707

[86] Jiawei Liu, Jinjun Peng, Yuyao Wang, and Lingming Zhang. 2023. NeuRI: Di-
versifying DNN Generation via Inductive Rule Inference. In Proceedings of the

31st ACM Joint European Software Engineering Conference and Symposium on

the Foundations of Software Engineering (San Francisco, CA, USA) (ESEC/FSE
2023). Association for Computing Machinery, New York, NY, USA, 657–669.
https://doi.org/10.1145/3611643.3616337

[87] Zhengyang Liu, Stefan Mada, and John Regehr. 2024. Minotaur: A SIMD-
Oriented Synthesizing Superoptimizer. Proc. ACM Program. Lang. 8, OOPSLA2,
Article 326 (Oct. 2024), 25 pages. https://doi.org/10.1145/3689766

[88] Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr.
2021. Alive2: bounded translation validation for LLVM. In Proceedings of the

42nd ACM SIGPLAN International Conference on Programming Language Design

and Implementation (Virtual, Canada) (PLDI 2021). Association for Computing
Machinery, New York, NY, USA, 65–79. https://doi.org/10.1145/3453483.3454030

[89] Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John Regehr. 2015.
Provably correct peephole optimizations with alive. In Proceedings of the 36th

ACM SIGPLAN Conference on Programming Language Design and Implementation

(Portland, OR, USA) (PLDI ’15). Association for Computing Machinery, New
York, NY, USA, 22–32. https://doi.org/10.1145/2737924.2737965

[90] Sirui Lu and Rastislav Bodík. 2023. Grisette: Symbolic Compilation as a Func-
tional Programming Library. Proc. ACM Program. Lang. 7, POPL, Article 16 (jan
2023), 33 pages. https://doi.org/10.1145/3571209

[91] Haoyang Ma. 2023. A Survey of Modern Compiler Fuzzing.
arXiv:2306.06884 [cs.SE] https://arxiv.org/abs/2306.06884

[92] Charith Mendis, Alex Renda, Dr.Saman Amarasinghe, and Michael Carbin.
2019. Ithemal: Accurate, Portable and Fast Basic Block Throughput Estima-
tion using Deep Neural Networks. In Proceedings of the 36th International

Conference on Machine Learning (Proceedings of Machine Learning Research,

Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR, 4505–
4515. https://proceedings.mlr.press/v97/mendis19a.html

[93] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen,
David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh
Venkatesh, and Hao Wu. 2018. Mixed Precision Training. In International

Conference on Learning Representations. https://openreview.net/forum?id=
r1gs9JgRZ

[94] PauliusMicikevicius, Dusan Stosic, Neil Burgess, Marius Cornea, Pradeep Dubey,
Richard Grisenthwaite, Sangwon Ha, Alexander Heinecke, Patrick Judd, John
Kamalu, Naveen Mellempudi, Stuart Oberman, Mohammad Shoeybi, Michael
Siu, andHaoWu. 2022. FP8 Formats for Deep Learning. arXiv:2209.05433 [cs.LG]
https://arxiv.org/abs/2209.05433

[95] Manasij Mukherjee and John Regehr. 2024. Hydra: Generalizing Peephole
Optimizations with Program Synthesis. Proc. ACM Program. Lang. 8, OOPSLA1,
Article 120 (April 2024), 29 pages. https://doi.org/10.1145/3649837

[96] Rachit Nigam, Sachille Atapattu, Samuel Thomas, Zhijing Li, Theodore Bauer,
Yuwei Ye, Apurva Koti, Adrian Sampson, and Zhiru Zhang. 2020. Predictable
accelerator design with time-sensitive affine types. In Proceedings of the 41st

ACM SIGPLAN Conference on Programming Language Design and Implementation

(London, UK) (PLDI 2020). Association for Computing Machinery, New York,
NY, USA, 393–407. https://doi.org/10.1145/3385412.3385974

[97] Rachit Nigam, Samuel Thomas, Zhijing Li, and Adrian Sampson. 2021. A com-
piler infrastructure for accelerator generators. In Proceedings of the 26th ACM

International Conference onArchitectural Support for Programming Languages and

Operating Systems (Virtual, USA) (ASPLOS ’21). Association for Computing Ma-
chinery, New York, NY, USA, 804–817. https://doi.org/10.1145/3445814.3446712

[98] Badreddine Noune, Philip Jones, Daniel Justus, Dominic Masters, and
Carlo Luschi. 2022. 8-bit Numerical Formats for Deep Neural Networks.
arXiv:2206.02915 [cs.LG] https://arxiv.org/abs/2206.02915

[99] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen,
Victor A. Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany,
Stephen W. Keckler, and Joel Emer. 2019. Timeloop: A Systematic Approach to
DNN Accelerator Evaluation. In 2019 IEEE International Symposium on Perfor-

mance Analysis of Systems and Software (ISPASS). 304–315. https://doi.org/10.
1109/ISPASS.2019.00042

[100] Mangpo Phothilimthana, Sami Abu-El-Haija, Kaidi Cao, Bahare Fatemi, Michael
Burrows, Charith Mendis, and Bryan Perozzi. 2023. TpuGraphs: A Perfor-
mance Prediction Dataset on Large Tensor Computational Graphs. In Ad-

vances in Neural Information Processing Systems, A. Oh, T. Naumann, A. Glober-
son, K. Saenko, M. Hardt, and S. Levine (Eds.), Vol. 36. Curran Associates,
Inc., 70355–70375. https://proceedings.neurips.cc/paper_files/paper/2023/file/
ded1a89e2b3b925444ada973af66336e-Paper-Datasets_and_Benchmarks.pdf

[101] Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudarshan Srini-
vasan, Dipankar Das, Bharat Kaul, and Tushar Krishna. 2020. SIGMA: A Sparse
and Irregular GEMM Accelerator with Flexible Interconnects for DNN Training.
In 2020 IEEE International Symposium on High Performance Computer Architec-

ture (HPCA). 58–70. https://doi.org/10.1109/HPCA47549.2020.00015

1332

https://doi.org/10.1145/3079856.3080246
https://proceedings.mlsys.org/paper_files/paper/2021/file/6bcfac823d40046dca25ef6d6d59cc3f-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2021/file/6bcfac823d40046dca25ef6d6d59cc3f-Paper.pdf
https://doi.org/10.1109/ISCA45697.2020.00047
https://doi.org/10.23919/VLSICircuits52068.2021.9492391
https://proceedings.mlr.press/v139/kim21d.html
https://doi.org/10.1145/3296979.3192379
https://doi.org/10.1145/3296979.3192379
https://doi.org/10.1145/3620665.3640385
https://doi.org/10.1145/3534933
https://doi.org/10.1109/MM.2020.2985963
https://doi.org/10.1145/3173162.3173176
https://doi.org/10.1145/3289602.3293910
https://doi.org/10.1145/349299.349320
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://arxiv.org/abs/2310.01889
https://arxiv.org/abs/2310.01889
https://arxiv.org/abs/2310.01889
https://doi.org/10.1145/3575693.3575707
https://doi.org/10.1145/3575693.3575707
https://doi.org/10.1145/3611643.3616337
https://doi.org/10.1145/3689766
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/2737924.2737965
https://doi.org/10.1145/3571209
https://arxiv.org/abs/2306.06884
https://arxiv.org/abs/2306.06884
https://proceedings.mlr.press/v97/mendis19a.html
https://openreview.net/forum?id=r1gs9JgRZ
https://openreview.net/forum?id=r1gs9JgRZ
https://arxiv.org/abs/2209.05433
https://arxiv.org/abs/2209.05433
https://doi.org/10.1145/3649837
https://doi.org/10.1145/3385412.3385974
https://doi.org/10.1145/3445814.3446712
https://arxiv.org/abs/2206.02915
https://arxiv.org/abs/2206.02915
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/ISPASS.2019.00042
https://proceedings.neurips.cc/paper_files/paper/2023/file/ded1a89e2b3b925444ada973af66336e-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/ded1a89e2b3b925444ada973af66336e-Paper-Datasets_and_Benchmarks.pdf
https://doi.org/10.1109/HPCA47549.2020.00015

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Jain et al.

[102] UC Berkeley Architecture Research. 2023. Berkeley’s Spatial Array Generator.
https://github.com/ucb-bar/gemmini.

[103] UC Berkeley Architecture Research. 2023. Gemmini extensions for Spike. https:
//github.com/ucb-bar/libgemmini.

[104] UC Berkeley Architecture Research. 2024. The RISC-V ISA Simulator (Spike).
https://chipyard.readthedocs.io/en/stable/Software/Spike.html.

[105] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield, M. Weston,
R. Risen, J. Cook, P. Rosenfeld, E. Cooper-Balis, and B. Jacob. 2011. The structural
simulation toolkit. SIGMETRICS Perform. Eval. Rev. 38, 4 (March 2011), 37–42.
https://doi.org/10.1145/1964218.1964225

[106] Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Garret Catron, Summer Deng,
Roman Dzhabarov, Nick Gibson, James Hegeman, Meghan Lele, Roman Leven-
stein, Jack Montgomery, Bert Maher, Satish Nadathur, Jakob Olesen, Jongsoo
Park, Artem Rakhov, Misha Smelyanskiy, and Man Wang. 2019. Glow: Graph
Lowering Compiler Techniques for Neural Networks. arXiv:1805.00907 [cs.PL]
https://arxiv.org/abs/1805.00907

[107] Michael Sammler, Angus Hammond, Rodolphe Lepigre, Brian Campbell, Jean
Pichon-Pharabod, Derek Dreyer, Deepak Garg, and Peter Sewell. 2022. Islaris:
verification of machine code against authoritative ISA semantics. In Proceedings

of the 43rd ACM SIGPLAN International Conference on Programming Language

Design and Implementation (San Diego, CA, USA) (PLDI 2022). Association for
Computing Machinery, New York, NY, USA, 825–840. https://doi.org/10.1145/
3519939.3523434

[108] Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and accurate microar-
chitectural simulation of thousand-core systems. ACM SIGARCH Computer

architecture news 41, 3 (2013), 475–486.
[109] Roger S. Scowen. 1998. Extended BNF — A generic base standard. https:

//api.semanticscholar.org/CorpusID:18205990
[110] Qingchao Shen, Haoyang Ma, Junjie Chen, Yongqiang Tian, Shing-Chi Cheung,

and Xiang Chen. 2021. A comprehensive study of deep learning compiler bugs.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering (Athens,
Greece) (ESEC/FSE 2021). Association for Computing Machinery, New York, NY,
USA, 968–980. https://doi.org/10.1145/3468264.3468591

[111] Wilson Snyder. 2025. Verilator, the fast free Verilog/SystemVerilog simulator.
https://www.veripool.org/verilator/.

[112] Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang Wang, Swagath Venkatara-
mani, Vijayalakshmi Srinivasan, Xiaodong Cui, Wei Zhang, and Kailash
Gopalakrishnan. 2019. Hybrid 8-bit floating point (HFP8) training and infer-

ence for deep neural networks. Curran Associates Inc., Red Hook, NY, USA.
[113] Philippe Tillet, H. T. Kung, and David Cox. 2019. Triton: an intermediate

language and compiler for tiled neural network computations. In Proceedings

of the 3rd ACM SIGPLAN International Workshop on Machine Learning and

Programming Languages (Phoenix, AZ, USA) (MAPL 2019). Association for
Computing Machinery, New York, NY, USA, 10–19. https://doi.org/10.1145/
3315508.3329973

[114] Jianming Tong, Anirudh Itagi, Prasanth Chatarasi, and Tushar Krishna. 2025.
FEATHER: A Reconfigurable Accelerator with Data Reordering Support for Low-
Cost On-Chip Dataflow Switching. In Proceedings of the 51st Annual International
Symposium on Computer Architecture (Buenos Aires, Argentina) (ISCA ’24). IEEE
Press, 198–214. https://doi.org/10.1109/ISCA59077.2024.00024

[115] Linda Torczon and Keith Cooper. 2007. Engineering ACompiler (2nd ed.). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

[116] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal,
Zachary DeVito, William S. Moses, Sven Verdoolaege, Andrew Adams, and
Albert Cohen. 2018. Tensor Comprehensions: Framework-Agnostic High-
Performance Machine Learning Abstractions. arXiv:1802.04730 [cs.PL] https:
//arxiv.org/abs/1802.04730

[117] Jie Wang, Licheng Guo, and Jason Cong. 2021. AutoSA: A Polyhedral Compiler
for High-Performance Systolic Arrays on FPGA. In The 2021 ACM/SIGDA Inter-

national Symposium on Field-Programmable Gate Arrays (Virtual Event, USA)
(FPGA ’21). Association for Computing Machinery, New York, NY, USA, 93–104.
https://doi.org/10.1145/3431920.3439292

[118] Junjie Wang, Zhiyi Zhang, Shuang Liu, Xiaoning Du, and Junjie Chen. 2023.
FuzzJIT: Oracle-enhanced fuzzing for JavaScript engine JIT compiler. In Pro-

ceedings of the 32nd USENIX Conference on Security Symposium (Anaheim, CA,
USA) (SEC ’23). USENIX Association, USA, Article 105, 18 pages.

[119] Shibo Wang, Jinliang Wei, Amit Sabne, Andy Davis, Berkin Ilbeyi, Blake Hecht-
man, Dehao Chen, Karthik Srinivasa Murthy, Marcello Maggioni, Qiao Zhang,
Sameer Kumar, Tongfei Guo, Yuanzhong Xu, and Zongwei Zhou. 2022. Overlap
Communicationwith Dependent Computation via Decomposition in Large Deep
Learning Models. In Proceedings of the 28th ACM International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems, Volume 1

(Vancouver, BC, Canada) (ASPLOS 2023). Association for Computing Machinery,
New York, NY, USA, 93–106. https://doi.org/10.1145/3567955.3567959

[120] Jian Weng, Sihao Liu, Vidushi Dadu, Zhengrong Wang, Preyas Shah, and Tony
Nowatzki. 2020. DSAGEN: Synthesizing Programmable Spatial Accelerators. In
2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture

(ISCA). 268–281. https://doi.org/10.1109/ISCA45697.2020.00032
[121] Shaojie Xiang, Yi-Hsiang Lai, Yuan Zhou, Hongzheng Chen, Niansong Zhang,

Debjit Pal, and Zhiru Zhang. 2022. HeteroFlow: An Accelerator Programming
Model with Decoupled Data Placement for Software-Defined FPGAs. In Proceed-

ings of the 2022 ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays (Virtual Event, USA) (FPGA ’22). Association for Computing Ma-
chinery, New York, NY, USA, 78–88. https://doi.org/10.1145/3490422.3502369

[122] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and un-
derstanding bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN

Conference on Programming Language Design and Implementation (San Jose,
California, USA) (PLDI ’11). Association for Computing Machinery, New York,
NY, USA, 283–294. https://doi.org/10.1145/1993498.1993532

[123] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer
Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez,
and Ion Stoica. 2020. Ansor: generating high-performance tensor programs
for deep learning. In Proceedings of the 14th USENIX Conference on Operating

Systems Design and Implementation (OSDI’20). USENIX Association, USA, Article
49, 17 pages.

1333

https://github.com/ucb-bar/gemmini
https://github.com/ucb-bar/libgemmini
https://github.com/ucb-bar/libgemmini
https://chipyard.readthedocs.io/en/stable/Software/Spike.html
https://doi.org/10.1145/1964218.1964225
https://arxiv.org/abs/1805.00907
https://arxiv.org/abs/1805.00907
https://doi.org/10.1145/3519939.3523434
https://doi.org/10.1145/3519939.3523434
https://api.semanticscholar.org/CorpusID:18205990
https://api.semanticscholar.org/CorpusID:18205990
https://doi.org/10.1145/3468264.3468591
https://www.veripool.org/verilator/
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1109/ISCA59077.2024.00024
https://arxiv.org/abs/1802.04730
https://arxiv.org/abs/1802.04730
https://arxiv.org/abs/1802.04730
https://doi.org/10.1145/3431920.3439292
https://doi.org/10.1145/3567955.3567959
https://doi.org/10.1109/ISCA45697.2020.00032
https://doi.org/10.1145/3490422.3502369
https://doi.org/10.1145/1993498.1993532

	Abstract
	1 Introduction
	1.1 Problem
	1.2 Challenges
	1.3 Our Solution

	2 Background
	2.1 ISA and ISA Semantics
	2.2 Tensor Accelerators and ISAs
	2.3 Simulation Tools
	2.4 XLA compiler and XLA-HLO IR

	3 Tensor Accelerator ISA Definition Language
	3.1 Data Model Definition
	3.2 Instruction Semantics

	4 Expressivity of TAIDL
	4.1 Supporting Multi-dimensional Base-types
	4.2 Supporting Multi-dimensional Addressing
	4.3 Tensor Buffers vs. Control Registers
	4.4 Modeling compute using XLA-HLO
	4.5 Augmenting IF and REPEAT blocks

	5 Modeling semantics of new ISAs using TAIDL
	5.1 Theoretically complete
	5.2 Semantically precise
	5.3 Integrated with ML ecosystem
	5.4 Backward compatible: scalar & bit-vector
	5.5 Forward compatible: custom datatypes

	6 ISA-specific Test Oracles (TAIDL-TOs)
	6.1 Architect's View: Generating Oracle library
	6.2 Programmer's View: Kernel Function
	6.3 Novel Transformation Algorithm
	6.4 Programmer's View: Compiling the Oracle
	6.5 Programmer's View: Running the Oracle
	6.6 Discussion

	7 Scalability of Auto-generated TAIDL-TOs
	7.1 Experimental Setup
	7.2 Gemmini Spike
	7.3 Intel SDE
	7.4 Discussion: Performance Gains
	7.5 Discussion: TAIDL-TO (CPU) vs (GPU)

	8 TAIDL-TO in Practice
	8.1 Case Study: Integrating TAIDL-TO into Existing Compiler Testing Infrastructure
	8.2 Case Study: Simulating End-to-End Model

	9 Related Works
	10 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Experiment customization
	A.8 Methodology

	References

